• 제목/요약/키워드: mucin protein

Search Result 65, Processing Time 0.03 seconds

Butyrate modulates bacterial adherence on LS174T human colorectal cells by stimulating mucin secretion and MAPK signaling pathway

  • Jung, Tae-Hwan;Park, Jeong Hyeon;Jeon, Woo-Min;Han, Kyoung-Sik
    • Nutrition Research and Practice
    • /
    • v.9 no.4
    • /
    • pp.343-349
    • /
    • 2015
  • BACKGROUND/OBJECTIVES: Fermentation of dietary fiber results in production of various short chain fatty acids in the colon. In particular, butyrate is reported to regulate the physical and functional integrity of the normal colonic mucosa by altering mucin gene expression or the number of goblet cells. The objective of this study was to investigate whether butyrate modulates mucin secretion in LS174T human colorectal cells, thereby influencing the adhesion of probiotics such as Lactobacillus and Bifidobacterium strains and subsequently inhibiting pathogenic bacteria such as E. coli. In addition, possible signaling pathways involved in mucin gene regulation induced by butyrate treatment were also investigated. MATERIALS/METHODS: Mucin protein content assay and periodic acid-Schiff (PAS) staining were performed in LS174T cells treated with butyrate at various concentrations. Effects of butyrate on the ability of probiotics to adhere to LS174T cells and their competition with E. coli strains were examined. Real time polymerase chain reaction for mucin gene expression and Taqman array 96-well fast plate-based pathway analysis were performed on butyrate-treated LS174T cells. RESULTS: Treatment with butyrate resulted in a dose-dependent increase in mucin protein contents in LS174T cells with peak effects at 6 or 9 mM, which was further confirmed by PAS staining. Increase in mucin protein contents resulted in elevated adherence of probiotics, which subsequently reduced the adherent ability of E. coli. Treatment with butyrate also increased transcriptional levels of MUC3, MUC4, and MUC12, which was accompanied by higher gene expressions of signaling kinases and transcription factors involved in mitogen-activated protein kinase (MAPK) signaling pathways. CONCLUSIONS: Based on our results, butyrate is an effective regulator of modulation of mucin protein production at the transcriptional and translational levels, resulting in changes in the adherence of gut microflora. Butyrate potentially stimulates the MAPK signaling pathway in intestinal cells, which is positively correlated with gut defense.

Regulation of Tumor Necrosis Factor-${\alpha}$-induced Airway Mucin Production and Gene Expression by Carbenoxolone, Prunetin, and Silibinin

  • Lee, Hyun-Jae;Lee, Su-Yel;Jeon, Byeong-Kyou;Lee, Jae-Woo;Lee, Mi-Nam;Kim, Ju-Ock;Lee, Choong-Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.69 no.5
    • /
    • pp.348-353
    • /
    • 2010
  • Background: In this study, we tried to investigate whether carbenoxolone, prunetin, and silibinin affect tumor necrosis factor (TNF)-${\alpha}$-induced MUC5AC mucin production and gene expression from human airway epithelial cells. Methods: Confluent NCI-H292 cells were pretreated with each agent (carbenoxolone, prunetin, and silibinin) for 30 min and then stimulated with TNF-${\alpha}$ for 24 hours. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription-polymerase chain reaction and enzyme linked immunosorbent assay, respectively. Results: Carbenoxolone, prunetin and silibinin inhibited the production of MUC5AC mucin protein induced by TNF-${\alpha}$; the 3 compounds also inhibited the expression of MUC5AC mucin gene induced by TNF-${\alpha}$. Conclusion: This result suggests that carbenoxolone, prunetin and silibinin can inhibit mucin gene expression and production of mucin protein induced by TNF-${\alpha}$, by directly acting on airway epithelial cells.

Effects of Nodakenin, Columbianadin, and Umbelliferone Isolated from the Roots of Angelica decursiva on the Gene Expression and Production of MUC5AC Mucin from Human Airway Epithelial NCI-H292 Cells

  • Lee, Hyun Jae;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • v.23 no.3
    • /
    • pp.201-207
    • /
    • 2017
  • Angelica decursiva has been utilised as remedy for controlling the airway inflammatory diseases in folk medicine. We investigated whether nodakenin, columbianadin, and umbelliferone isolated from the roots of Angelica decursiva inhibit the gene expression and production of MUC5AC mucin from human airway epithelial cells. Confluent NCI-H292 cells were pretreated with nodakenin, columbianadin or umbelliferone for 30 min and then stimulated with epidermal growth factor (EGF), phorbol 12-myristate 13-acetate (PMA) or tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$) for 24 h. The MUC5AC mucin gene expression was measured by reverse transcription - polymerase chain reaction (RT-PCR). Production of MUC5AC mucin protein was measured by enzyme-linked immunosorbent assay (ELISA). The results were as follows: (1) Nodakenin did not affect the expression of MUC5AC mucin gene induced by EGF, PMA or $TNF-{\alpha}$. Columbianadin inhibited the expression of MUC5AC mucin gene induced by EGF or PMA. However, umbelliferone inhibited the expression of MUC5AC mucin gene induced by EGF, PMA or $TNF-{\alpha}$; (2) Nodakenin also did not affect the production of MUC5AC mucin protein induced by EGF, PMA or $TNF-{\alpha}$. Columbianadin inhibited the production of MUC5AC mucin protein induced by PMA. However, umbelliferone inhibited the production of MUC5AC mucin protein induced by EGF, PMA or $TNF-{\alpha}$. These results suggest that, among the three compounds investigated, umbelliferone only inhibits the gene expression and production of MUC5AC mucin stimulated by various inducers, by directly acting on airway epithelial cells, and the results might explain the traditional use of Angelica decursiva as remedy for diverse inflammatory pulmonary diseases.

Effect of Platycodin D on Airway MUC5AC Mucin Production and Gene Expression Induced by Growth Factor and Proinflammatory Factor

  • Lee, Hyun-Jae;Lee, Su-Yel;Jeon, Byeong-Kyou;Lee, Jae-Woo;Kim, Young-Sik;Lee, Mi-Nam;Lee, Choong-Jae
    • Biomolecules & Therapeutics
    • /
    • v.18 no.3
    • /
    • pp.294-299
    • /
    • 2010
  • In this study, we tried to investigate whether platycodin D significantly affects MUC5AC mucin production and gene expression induced by epidermal growth factor (EGF), phorbol ester (PMA) and tumor necrosis factor-$\alpha$ (TNF-$\alpha$) from human airway epithelial cells. Confluent NCI-H292 cells were pretreated with varying concentrations of platycodin D for 30 min and then stimulated with EGF, PMA and TNF-$\alpha$ for 24h, respectively. MUC5AC mucin gene expression and mucin protein production were measured by RT-PCR and ELISA. The results were as follows: (1) Platycodin D was found to inhibit the production of MUC5AC mucin protein induced by EGF, PMA, and TNF-$\alpha$, respectively. (2) It also inhibited the expression of MUC5AC mucin gene induced by the same inducers. These results suggest that platycodin D can regulate mucin gene expression and production of mucin protein, by directly acting on human airway epithelial cells.

Effects of Baicalin, Baicalein and Schizandrin on Airway Mucin Production Induced by Epidermal Growth Factor and Phorbol Ester

  • Lee, Hyun-Jae;Lee, Su-Yel;Kim, Young-Sik;Jeon, Byeong-Kyou;Lee, Jae-Woo;Bae, Heung-Seog;Lee, Choong-Jae
    • Biomolecules & Therapeutics
    • /
    • v.18 no.4
    • /
    • pp.396-401
    • /
    • 2010
  • We conducted this study to investigate whether baicalin, baicalein or schizandrin significantly affect MUC5AC mucin production induced by epidermal growth factor (EGF) or phorbol ester (PMA) in human airway epithelial cells. Confluent NCI-H292 cells were pretreated with varying concentrations of baicalin, baicalein or schizandrin for 30 min and then stimulated with EGF or PMA for 24 h, respectively. MUC5AC mucin protein production was measured by ELISA. The results were as follows: (1) Baicalin was found to inhibit the production of MUC5AC mucin protein induced by both EGF and PMA. (2) Baicalein, the aglycone of baicalin, also inhibited MUC5AC mucin production. (3) Schizandrin, derived from Schizandrae Fructus, inhibited MUC5AC mucin production by the same inducers. These results suggest that baicalin, baicalein and schizandrin can regulate the production of mucin protein by directly acting on human airway epithelial cells.

Effect of Berberine on MUC5AC Mucin Gene Expression and Mucin Production from Human Airway Epithelial Cells

  • Sikder, Md. Asaduzzaman;Lee, Hyun-Jae;Lee, Su-Yel;Bae, Heung-Seog;Kim, Jang-Hyun;Chang, Gyu-Tae;Lee, Choong-Jae
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.320-323
    • /
    • 2011
  • We conducted this study to investigate whether berberine signifi cantly affects MUC5AC mucin gene expression and mucin production induced by epidermal growth factor (EGF), phorbol 12-myristate 13-acetate (PMA) or tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) from human airway epithelial cells. Confl uent NCI-H292 cells were pretreated with varying concentrations of berberine for 30 min and then stimulated with EGF, PMA or TNF-${\alpha}$ for 24 h. MUC5AC mucin gene expression and mucin production were measured by reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Berberine was found to inhibit the expression of MUC5AC mucin gene induced by EGF, PMA or TNF-${\alpha}$. Berberine also inhibited the production of MUC5AC mucin protein stimulated by the same inducers. This result suggests that berberine can regulate the expression of mucin gene and production of mucin protein, by directly acting on human airway epithelial cells.

Pyunkang-hwan (Pyunkang-tang) Regulates Hypersecretion of Pulmonary Mucin from Rats with Sulfur Dioxide-Induced Bronchitis and Production and Gene Expression of MUC5AC Mucin from Human Airway Epithelial Cells

  • Seo, Hyo-Seok;Lee, Hyun Jae;Lee, Choong Jae
    • Natural Product Sciences
    • /
    • v.20 no.3
    • /
    • pp.196-201
    • /
    • 2014
  • Pyunkang-hwan (Pyunkang-tang) extract (PGT) is a traditional folk medicine for controlling diverse pulmonary diseases including bronchitis, tonsiltis and pneumonitis. We investigated whether PGT significantly affects secretion, production and gene expression of airway mucin using in vivo and in vitro experimental models reflecting the hypersecretion and/or hyperproduction of mucus observed in inflammatory pulmonary diseases. For in vivo experiment, effect of PGT was checked on hypersecretion of pulmonary mucin in sulfur dioxide-induced bronchitis in rats. For in vitro experiment, confluent NCI-H292 cells were pretreated with PGT for 30 min and then stimulated with EGF (epidermal growth factor), PMA (phorbol 12-myristate 13-acetate) or TNF-${\alpha}$ (tumor necrosis factor-${\alpha}$) for 24 h. The MUC5AC mucin gene expression and mucin protein production were measured by RT-PCR and ELISA. The results were as follows: (1) PGT inhibited the expression of MUC5AC mucin gene induced by EGF, PMA or TNF-${\alpha}$ from NCI-H292 cells, respectively; (2) PGT also inhibited the production of MUC5AC mucin protein induced by the same inducers from NCI-H292 cells, respectively; (3) PGT inhibited secretion of mucin in sulfur dioxide-induced bronchitis rat model. This result suggests that PGT can regulate secretion, production and gene expression of airway mucin.

Effect of Chrysin on Gene Expression and Production of MUC5AC Mucin from Cultured Airway Epithelial Cells

  • Shin, Hyun-Dae;Lee, Hyun Jae;Sikder, Asaduzzaman Md.;Park, Su Hyun;Ryu, Jiho;Hong, Jang-Hee;Kim, Ju-Ock;Seok, Jeong Ho;Lee, Choong Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.73 no.4
    • /
    • pp.204-209
    • /
    • 2012
  • Background: We investigated whether chrysin affected MUC5AC mucin production and gene expression induced by phorbol ester (phorbol 12-myristate 13-acetate, PMA) or epidermal growth factor (EGF) from human airway epithelial cells. Methods: Confluent NCI-H292 cells were pretreated with varying concentrations of chrysin for 30 minutes, and were then stimulated with PMA and EGF for 24 hours, respectively. MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay. Results: Concentrations of $10{\mu}M$ and $100{\mu}M$ chrysin were found to inhibit the production of MUC5AC mucin protein induced by PMA; A concentration of $100{\mu}M$ chrysin also inhibited the production of MUC5AC mucin protein induced by EGF; $100{\mu}M$ chrysin inhibited the expression of MUC5AC mucin gene induced by PMA or EGF. The cytotoxicity of chrysin was checked by lactate dehydrogenase assay, and there was no cytotoxic effect observed for chrysin. Conclusion: These results suggest that chrysin can inhibit mucin gene expression and the production of mucin protein by directly acting on airway epithelial cells.

Adhesive Properties, Extracellular Protein Production, and Metabolism in the Lactobacillus rhamnosus GG Strain when Grown in the Presence of Mucin

  • Sanchez, Borja;Saad, Naima;Schmitter, Jean-Marie;Bressollier, Philippe;Urdaci, Maria C.
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.6
    • /
    • pp.978-984
    • /
    • 2010
  • This paper examines the probiotic bacterium Lactobacillus rhamnosus GG, and how it reacts to the presence of mucin in its extracellular milieu. Parameters studied included cell clustering, adhesion to mucin, extracellular protein production, and formation of final metabolites. L. rhamnosus GG was found to grow efficiently in the presence of glucose, N-acetylglucosamine, or mucin (partially purified or purified) as sole carbon sources. However, it was unable to grow using other mucin constituents, such as fucose or glucuronic acid. Mucin induced noticeable changes in all the parameters studied when compared with growth using glucose, including in the formation of cell clusters, which were easily disorganized with trypsin. Mucin increased adhesion of the bacterium, and modulated the production of extracellular proteins. SDS-PAGE revealed that mucin was not degraded during L. rhamnosus GG growth, suggesting that this bacterium is able to partially use the glucidic moiety of glycoprotein. This study goes some way towards developing an understanding of the metabolic and physiological changes that L. rhamnosus GG undergoes within the human gastrointestinal tract.

Apigenin Inhibits Tumor Necrosis Factor-α-Induced Production and Gene Expression of Mucin through Regulating Nuclear Factor-Kappa B Signaling Pathway in Airway Epithelial Cells

  • Seo, Hyo-Seok;Sikder, Mohamed Asaduzzaman;Lee, Hyun Jae;Ryu, Jiho;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.525-531
    • /
    • 2014
  • In the present study, we investigated whether apigenin significantly affects tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced production and gene expression of MUC5AC mucin in airway epithelial cells. Confluent NCI-H292 cells were pretreated with apigenin for 30 min and then stimulated with TNF-${\alpha}$ for 24 h or the indicated periods. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Apigenin significantly inhibited MUC5AC mucin production and down-regulated MUC5AC gene expression induced by TNF-${\alpha}$ in NCI-H292 cells. To elucidate the action mechanism of apigenin, effect of apigenin on TNF-${\alpha}$-induced nuclear factor kappa B (NF-${\kappa}B$) signaling pathway was also investigated by western blot analysis. Apigenin inhibited NF-${\kappa}B$ activation induced by TNF-${\alpha}$. Inhibition of inhibitory kappa B kinase (IKK) by apigenin led to the suppression of inhibitory kappa B alpha ($I{\kappa}B{\alpha}$) phosphorylation and degradation, p65 nuclear translocation. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. Apigenin also has an influence on upstream signaling of IKK because it inhibited the expression of adaptor protein, receptor interacting protein 1 (RIP1). These results suggest that apigenin can regulate the production and gene expression of mucin through regulating NF-${\kappa}B$ signaling pathway in airway epithelial cells.