• Title/Summary/Keyword: mucin 5AC

Search Result 73, Processing Time 0.02 seconds

Effect of Geonpye-tang(GPT) on Production and Gene Expression of Respiratory Mucin (건폐탕(健肺陽)이 호흡기 뮤신의 생성 및 유전자 발현에 미치는 영향)

  • Jung, Byeong-Jin;Kim, Ho;Seo, Un-Kyo
    • The Journal of Internal Korean Medicine
    • /
    • v.30 no.4
    • /
    • pp.685-695
    • /
    • 2009
  • Objectives : In this study, the author tried to investigate whether Geonpye-tang(GPT) significantly affects PMA-, EGF- or TNF-alpha-induced MUC5AC mucin production and gene expression from human airway epithelial cells. Materials and Methods : Effects of the agent on PMA-, EGF- or TNF-alpha-induced MUC5AC mucin production and gene expression from human airway epithelial cells (NCI-H292) were investigated. Confluent NCI-H292 cells were pretreated for 30 min in the presence of GPT and treated with PMA (10ng/ml) or EGF (25ng/ml) or TNF-alpha (0.2nM), to assess both effect of the agent on PMA- or EGF- or TNF-alpha-induced MUC5AC mucin production by enzyme-linked immunosorbent assay (ELISA) and gene expression by reverse transcription-polymerase chain reaction (RT-PCR). Possible cytotoxicity of the agent was assessed by examining the rate of survival and proliferation of NCI-H292 cells after treatment with the agent over 72 hrs (SRB assay). Results : (1) GPT significantly inhibited PMA-induced and EGF-induced MUC5AC mucin production from NCI-H292 cells. However, GPT did not affect TNF-alpha-induced MUC5AC mucin production. (2) GPT significantly inhibited the expression levels of PMA-, EGF- or TNF-alpha-induced MUC5AC genes in NCI-H292 cells (3) GPT did not show significant cytotoxicity to NCI-H292 cells. Conclusion : This result suggests that GPT can affect the production and gene expression of respiratory mucin observed in diverse respiratory diseases accompanied by mucus hypersecretion. This can explain the traditional use of GPT in oriental medicine. Effects of GPT with their components should be further investigated using animal experimental models that reflect pathophysiology of airway diseases through future studies.

  • PDF

Effects of Lupenone, Lupeol, and Taraxerol Derived from Adenophora triphylla on the Gene Expression and Production of Airway MUC5AC Mucin

  • Yoon, Yong Pill;Lee, Hyun Jae;Lee, Dong-Ung;Lee, Sang Kook;Hong, Jang-Hee;Lee, Choong Jae
    • Tuberculosis and Respiratory Diseases
    • /
    • v.78 no.3
    • /
    • pp.210-217
    • /
    • 2015
  • Background: Adenophora triphylla var. japonica is empirically used for controlling airway inflammatory diseases in folk medicine. We evaluated the gene expression and production of mucin from airway epithelial cells in response to lupenone, lupeol and taraxerol derived from Adenophora triphylla var. japonica. Methods: Confluent NCI-H292 cells were pretreated with lupenone, lupeol or taraxerol for 30 minutes and then stimulated with tumor necrosis factor ${\alpha}$ (TNF-${\alpha}$) for 24 hours. The MUC5AC mucin gene expression and production were measured by reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. Additionally, we examined whether lupenone, lupeol or taraxerol affects MUC5AC mucin production induced by epidermal growth factor (EGF) and phorbol 12-myristate 13-acetate (PMA), the other 2 stimulators of airway mucin production. Results: Lupenone, lupeol, and taraxerol inhibited the gene expression and production of MUC5AC mucin induced by TNF-${\alpha}$ from NCI-H292 cells, respectively. The 3 compounds inhibited the EGF or PMA-induced production of MUC5AC mucin in NCI-H292 cells. Conclusion: These results indicated that lupenone, lupeol and taraxerol derived from Adenophora triphylla var. japonica regulates the production and gene expression of mucin, by directly acting on airway epithelial cells. In addition, the results partly explain the mechanism of of Adenophora triphylla var. japonica as a traditional remedy for diverse inflammatory pulmonary diseases.

Metalloproteinase Plays a Role in Mucin Secretion (Mucin 분비에 영향을 미치는 Metalloproteinase)

  • Oh, Yeon-Mok;Choi, Hee Jin;Shim, Tae Sun;Lee, Sang Do;Kim, Woo Sung;Kim, Dong-Soon
    • Tuberculosis and Respiratory Diseases
    • /
    • v.56 no.3
    • /
    • pp.289-296
    • /
    • 2004
  • Background : Mucus hypersecretion in the patients with airway diseases represents poor prognosis as well as discomfort. However, there is no known therapy for its effective control. One important component of mucus is mucin, a glycosylated protein, which endows mucus with viscosity. We studied whether a proteinase has a role in mucin secretion and if so, which. Methods : (1) Inhibition of mucin secretion Group-specific proteinase inhibitors were tested to evaluate whether a proteinase belonging to a group of proteinases plays a role in mucin secretion. Phenylmethylsulfonyl fluoride(PMSF, a serine proteinase inhibitor), E-64(a cysteine proteinase inhibitor), Pepstatin(an aspartic proteinase inhibitor) and 1, 10-Phenanthroline(a metalloproteinase inhibitor) were treated into the Calu-3 cell line for 24 hours. The enzyme linked immunoabsorbant assay(ELISA) for MUC5AC was performed to evaluate the amount of mucin secretion and to compare with a control. (2) Stimulation of mucin secretion Matrix metalloproteinase-9(MMP-9), MMP-12 and TACE(TNF-alpha converting enzyme), which are known to be related with airway diseases, were used to be treated into Calu-3 for 24 hours. ELISA for MUC5AC was performed to evaluate the amount of mucin secretion and to compare with the controls. Results : (1) PMSF($10^{-4}M$), E-64($10^{-4}M$), Pepstatin($10^{-6}M$) and 1, 10-Phenanthroline($10^{-4}M$) reduced the MUC5AC secretion by $1{\pm}4.9%$(mean${\pm}$standard deviation; P=1.0 compared with the control), $-6{\pm}3.9%$(P=0.34), $-13{\pm}9.7%$(P=0.34) and $41{\pm}8.2%$(P=0.03), respectively. (2) The amounts of MUC5AC secretion stimulated by MMP-9(250ng/ml), MMP-12(100ng/ml) and TACE(200ng/ml) were $103{\pm}6%$(P=0.39), $102{\pm}8%$(P=1.0) and $107{\pm}13%$(P=0.39), respectively, compared with the controls. Conclusion : Metalloproteinase(s) is (are) suggested to play a role in mucin secretion. It appears that metalloproteinases, other than MMP-9, MMP-12 or TACE, affect the mucin secretion in this in vitro model.

Effect of Ambroxol on Secretion, Production and Gene Expression of Mucin from Cultured Airway Epithelial Cells

  • Lee, Hyun-Jae;Lee, Su-Yel;Cho, Kyoung-Rai;Jeon, Byeong-Kyou;Lee, Jae-Woo;Bae, Heung-Seog;Lee, Choong-Jae
    • Biomolecules & Therapeutics
    • /
    • v.19 no.1
    • /
    • pp.65-69
    • /
    • 2011
  • In this study, we investigated whether ambroxol significantly affects secretion, production and gene expression of mucin from cultured airway epithelial cells. Confluent primary rat tracheal surface epithelial (RTSE) cells were pretreated with adenosine triphosphate (ATP) for 5 min and then treated for 30 min with ambroxol to assess the effect on mucin secretion using ELISA. Additionally, confluent NCI-H292 cells were pretreated with ambroxol for 30 min and then stimulated with EGF or PMA for 24 h. The MUC5AC mucin gene expression and mucin protein production were measured by RT-PCR and ELISA. The results were as follows: (1) ambroxol did not significantly affect ATP-induced mucin secretion from cultured RTSE cells; (2) ambroxol inhibited the production of MUC5AC mucin protein induced by EGF and PMA in NCI-H292 cells; (3) ambroxol also inhibited the expression of MUC5AC mucin gene induced by EGF and PMA in NCI-H292 cells. This result suggests that ambroxol can inhibit the production and gene expression of MUC5AC mucin, by directly acting on human airway epithelial cells.

Kaempferol Regulates the Expression of Airway MUC5AC Mucin Gene via IκBα-NF-κB p65 and p38-p44/42-Sp1 Signaling Pathways

  • Li, Xin;Jin, Fengri;Lee, Hyun Jae;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.29 no.3
    • /
    • pp.303-310
    • /
    • 2021
  • In the present study, kaempferol, a flavonoidal natural compound found in Polygonati Rhizoma, was investigated for its potential effect on the gene expression and production of airway MUC5AC mucin. A human respiratory epithelial NCI-H292 cells was pretreated with kaempferol for 30 min and stimulated with epidermal growth factor (EGF) or phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect on PMA-induced nuclear factor kappa B (NF-κB) signaling pathway or EGF-induced mitogen-activated protein kinase (MAPK) signaling pathway was investigated. Kaempferol suppressed the production and gene expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IκBα), and NF-κB p65 nuclear translocation. Also, kaempferol inhibited EGF-induced gene expression and production of MUC5AC mucin through regulating the phosphorylation of EGFR, phosphorylation of p38 MAPK and extracellular signal-regulated kinase (ERK) 1/2 (p44/42), and the nuclear expression of specificity protein-1 (Sp1). These results suggest kaempferol regulates the gene expression and production of mucin through regulation of NF-κB and MAPK signaling pathways, in human airway epithelial cells.

Regulation of the Gene Expression of Airway MUC5AC Mucin through NF-κB Signaling Pathway by Artesunate, an Antimalarial Agent

  • Kyung-il Kim;Rajib Hossain;Jiho Ryu;Hyun Jae Lee;Choong Jae Lee
    • Biomolecules & Therapeutics
    • /
    • v.31 no.5
    • /
    • pp.544-549
    • /
    • 2023
  • In this study, artesunate, an antimalarial agent, was investigated for its potential effect on the gene expression of airway MUC5AC mucin. The human pulmonary epithelial NCI-H292 cells were pretreated with artesunate for 30 min and then stimulated with phorbol 12-myristate 13-acetate (PMA), for the following 24 h. The effect of artesunate on PMA-induced nuclear factor kappa B (NF-kB) signaling pathway was also examined. Artesunate inhibited the glycoprotein production and mRNA expression of MUC5AC mucins, induced by PMA through the inhibition of degradation of inhibitory kappa Bα (IkBα) and NF-kB p65 nuclear translocation. These results suggest artesunate suppresses the gene expression of mucin through regulation of NF-kB signaling pathway, in human pulmonary epithelial cells.

Effects of Bojung-ikgitang-gamibang and Seonbang-paedoktang on Secretion of Airway Mucus and Expression of Mucin Gene (보중익기탕 가미방(補中益氣湯 加味方)과 선방패독탕(仙方敗毒湯)이 기도 점액의 분비와 뮤신 유전자발현에 미치는 영향)

  • Jung, Chang-Ho;Han, Jae-Kyung;Kim, Yun-Hee
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.21 no.3
    • /
    • pp.33-55
    • /
    • 2007
  • Objectives In the present study, the author intended to investigate whether bojung-ikgitang-gamibang(BJGB) and seonbang-paedoktang(SBPT) significantly affect in vivo and in vitro mucin secretion from airway epithelial cells. Methods In vivo experiment, mice's mucin which is on a hypersecretion of airway mucin, mice's tracheal goblet cells in hyperplasia and mice's intraepithelial mucosubstances were exposed with SO2for3weeks. Effects of orally-administered BJGB and SBPT during 1 week on vivo mucin secretion and hyperplasia of tracheal goblet cells were assessed by using both enzyme-linked immunosorbent assay(ELISA) and staining goblet cells with alcian blue. In vitro experiment, confluent hamster tracheal surface epithelial(HTSE) cells were metabolically radiolabeled with 3H-glucosamine for 24hrs and chased for 30 min in the presence of each agent to figure out the effectiveness of 3H-mucin secretion. Total elution profiles of control spent media and treatment sample through Sepharose CL-4B column were analyzed. The effects of each agent on contractility of isolated tracheal smooth muscle and effects of each agent on MUC5AC gene expression in cultured HTSE cells were investigated. Also, possible cytotoxicities of each agent were assessed by measuring lactate dehydrogenase(LDH) release. Additionally, effects of BJGB and SBPT on both MUC5AC gene expression in cultured HTSE cells and TNF- or EGF-induced MUC5AC gene expression in human airway epithelial cells (NCI-H292) were investigated. Results (1) BJGB and SBPT inhibited hypersecretion of in vivo mucin. SBPT also inhibited the increase the number of goblet cells. However, BJGB did not affect the increase of number of goblet cells; (2) BJGB significantly increased mucin secretion from cultured HTSE cells, without significant cytotoxicity, and chiefly affected the 'mucin' secretion; (3) SBPT did not affect mucin secretion from cultured HTSE cells without significant cytotoxicity, and also did not affect the secretion of the other releseable glycoproteins; (4) BJGB and SBPT did not affect Ach-induced contraction of isolated tracheal smooth muscle; (5) SBPT significantly inhibit the expression levels of MUC5AC gene and BJGB significantly increased the expression levels of MUC5AC gene in both HTSE cells and NCI-H292 cells. Conclusions BJGB and SBPT can not only affect the secretion of mucin but also affect the expression of mucin gene. The author suggests that the effects BJGB and SBPT with their components should be further investigated and it is highly desirable to find from oriental medical prescriptions, novel agents which might regulate hypersecretion of mucin from airway epithelial cells.

  • PDF

Mometasone Furoate Suppresses PMA-Induced MUC-5AC and MUC-2 Production in Human Airway Epithelial Cells

  • Poachanukoon, Orapan;Koontongkaew, Sittichai;Monthanapisut, Paopanga;Pattanacharoenchai, Napaporn
    • Tuberculosis and Respiratory Diseases
    • /
    • v.80 no.1
    • /
    • pp.60-68
    • /
    • 2017
  • Background: Mucus hypersecretion from airway epithelium is a characteristic feature of airway inflammatory diseases. Tumor necrosis factor ${\alpha}$ (TNF-${\alpha}$) regulates mucin synthesis. Glucocorticoids including mometasone fuorate (MF) have been used to attenuate airway inflammation. However, effects of MF on mucin production have not been reported. Methods: Effects of MF and budesonide (BUD) on the phorbol-12-myristate-13-acetate (PMA)-induction of mucin and TNF-${\alpha}$ in human airway epithelial cells (NCI-H292) were investigated in the present study. Confluent NCI-H292 cells were pretreated with PMA (200 nM) for 2 hours. Subsequently, the cells were stimulated with MF (1-500 ng/mL) or BUD (21.5 ng/mL) for 8 hours. Dexamethasone ($1{\mu}g/mL$) was used as the positive control. Real-time polymerase chain reaction was used to determine MUC2 and MUC5AC mRNA levels. The level of total mucin, MUC2, MUC5AC, and TNF-${\alpha}$ in culture supernatants were measured using enzyme-linked immunosorbent assay. Results: MF and BUD significantly suppressed MUC2 and MUC5AC gene expression in PMA-stimulated NCI-H292 cells. The inhibitory effects of the two steroid drugs were also observed in the production of total mucin, MUC2 and MUC5AC proteins, and TNF-${\alpha}$. Conclusion: Our findings demonstrated that MF and BUD attenuated mucin and TNF-${\alpha}$ production in PMA-induced human airway epithelial cells.

Effects of Gagam-jeonggitang, Gami-hwajeongjeon and Gami-tonggyutang on secretion of airway mucus In Vitro and In Vivo (가감정기탕(加減正氣湯), 가미화정전(加味和正煎), 가미통규탕(加味通竅湯)이 기도점액 분비에 미치는 영향)

  • Han, Jae-Kyung;Kim, Yun-Hee;Chae, Ho-Youn
    • The Journal of Pediatrics of Korean Medicine
    • /
    • v.21 no.1
    • /
    • pp.117-137
    • /
    • 2007
  • Objectives : In the present study, the author intended to investigate Gagam-jeonggitang(GJT), Gami-hwajeongjeon(GHJ) and Gami-tonggyutang(GTT) significantly affect in vivo and in vitro mucin secretion from airway epithelial cells. Methods : In vivo experiment, the author induced hypersecretion of airway mucin, hyperplasia of tracheal goblet cells and the increase in intraepithelial mucosubstances by exposing rats to SO2 during 3 weeks. Effects of orally-administered GJT, GHJ and GTT during 1 week on in vivo mucin secretion and hyperplasia of tracheal goblet cells were assesed using ELISA and staining goblet cells with alcian blue. For in vitro experiment, confluent HTSE cells were metabolically radiolabeled with 3H-glucosamine for 24 hrs and chased for 30 min in the presence of each agent to assess the effects of each agent on 3H-mucin secretion. Possible cytotoxicities of each agent were assessed by measuring lactate dehydrogenase release. Also, the effects of each agent on contractility of isolated tracheal smooth muscle and effects of each agent on MUC5AC gene expression in cultured HTSE cells were investigated. Results : GJT, GHJ and GTI inhibited hypersecretion of in vivo mucin: GJT and GHJ inhibited the increase of number of goblet cells. However, GTT did not affect the increase of number of goblet cells; GJT and GTT significantly increased mucin secretion from cultured HTSE cells, without significant cytotoxicity. GHJ increased mucin secretion and showed mild cytotoxicity at the highest concentration: GJT, GHJ and GTT chiefly affected the 'mucin' secretion; GJT, GHJ and GTT did not affect Ach-induced contraction of isolated tracheal smooth muscle; GTT did not significantly affect the expression levels of MUC5AC gene. However, GJT significantly. inhibit the expression levels of MUC5AC gene and GHJ significantly increased the expression levels of MUC5AC gene. These results suggest that GJT, GHJ and GTI can increase mucin secretion during short-term treatment(in vitro), whereas it can inihibit hypersecretion of mucin during long-term treatment(in vivo) and GJT and GHJ can not only affect the secretion of mucin but also affect the expression of mucin gene. Conclusions : The author suggests that the effects GJT, GHJ and GTT with their components should be further investigated and it is valuable to find, from oriental medical prescriptions, novel agents which might regulate hypersecretion of mucin from airway epithelial cells.

  • PDF

Apigenin Inhibits Tumor Necrosis Factor-α-Induced Production and Gene Expression of Mucin through Regulating Nuclear Factor-Kappa B Signaling Pathway in Airway Epithelial Cells

  • Seo, Hyo-Seok;Sikder, Mohamed Asaduzzaman;Lee, Hyun Jae;Ryu, Jiho;Lee, Choong Jae
    • Biomolecules & Therapeutics
    • /
    • v.22 no.6
    • /
    • pp.525-531
    • /
    • 2014
  • In the present study, we investigated whether apigenin significantly affects tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced production and gene expression of MUC5AC mucin in airway epithelial cells. Confluent NCI-H292 cells were pretreated with apigenin for 30 min and then stimulated with TNF-${\alpha}$ for 24 h or the indicated periods. The MUC5AC mucin gene expression and mucin protein production were measured by reverse transcription - polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA), respectively. Apigenin significantly inhibited MUC5AC mucin production and down-regulated MUC5AC gene expression induced by TNF-${\alpha}$ in NCI-H292 cells. To elucidate the action mechanism of apigenin, effect of apigenin on TNF-${\alpha}$-induced nuclear factor kappa B (NF-${\kappa}B$) signaling pathway was also investigated by western blot analysis. Apigenin inhibited NF-${\kappa}B$ activation induced by TNF-${\alpha}$. Inhibition of inhibitory kappa B kinase (IKK) by apigenin led to the suppression of inhibitory kappa B alpha ($I{\kappa}B{\alpha}$) phosphorylation and degradation, p65 nuclear translocation. This, in turn, led to the down-regulation of MUC5AC protein production in NCI-H292 cells. Apigenin also has an influence on upstream signaling of IKK because it inhibited the expression of adaptor protein, receptor interacting protein 1 (RIP1). These results suggest that apigenin can regulate the production and gene expression of mucin through regulating NF-${\kappa}B$ signaling pathway in airway epithelial cells.