DOI QR코드

DOI QR Code

Effect of Ambroxol on Secretion, Production and Gene Expression of Mucin from Cultured Airway Epithelial Cells

  • Lee, Hyun-Jae (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Lee, Su-Yel (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Cho, Kyoung-Rai (Department of Otorhinolaryngology, Sanggye Paik Hospital, College of Medicine, Inje University) ;
  • Jeon, Byeong-Kyou (Department of Radiologic Technology, Daegu Health College) ;
  • Lee, Jae-Woo (LG Life Science) ;
  • Bae, Heung-Seog (Department of Pharmacology, School of Medicine, Chungnam National University) ;
  • Lee, Choong-Jae (Department of Pharmacology, School of Medicine, Chungnam National University)
  • Received : 2010.07.29
  • Accepted : 2010.09.15
  • Published : 2011.01.31

Abstract

In this study, we investigated whether ambroxol significantly affects secretion, production and gene expression of mucin from cultured airway epithelial cells. Confluent primary rat tracheal surface epithelial (RTSE) cells were pretreated with adenosine triphosphate (ATP) for 5 min and then treated for 30 min with ambroxol to assess the effect on mucin secretion using ELISA. Additionally, confluent NCI-H292 cells were pretreated with ambroxol for 30 min and then stimulated with EGF or PMA for 24 h. The MUC5AC mucin gene expression and mucin protein production were measured by RT-PCR and ELISA. The results were as follows: (1) ambroxol did not significantly affect ATP-induced mucin secretion from cultured RTSE cells; (2) ambroxol inhibited the production of MUC5AC mucin protein induced by EGF and PMA in NCI-H292 cells; (3) ambroxol also inhibited the expression of MUC5AC mucin gene induced by EGF and PMA in NCI-H292 cells. This result suggests that ambroxol can inhibit the production and gene expression of MUC5AC mucin, by directly acting on human airway epithelial cells.

Keywords

References

  1. Aliperta, A., Bellissimo, U., Turco, D. and Antinolfi, G. (1986) Normalization of bronchial exocrine pathology after endobronchial treatment with ambroxol. Int. J. Tissue React. 8, 167-174.
  2. Beeh, K. M., Beier, J., Esperester, A. and Paul, L. D. (2008) Anti-inflammatory properties of ambroxol. Eur. J. Med. Res. 13, 557-562.
  3. Gordon, J. L. (1986) Extracellular ATP: effects, sources and fate. Biochem. J. 233, 309-319.
  4. Heo, H. J., Lee, H. J., Yoon, C. S., Lim, S. P., Seok, J. H., Seo, U. K. and Lee, C. J. (2005) Effects of ambroxol, S-carboxymethylcysteine, dextromethorphan and noscapine on mucin release from airway goblet cells. Korean J. Physiol. Pharmacol. 9, 323-326.
  5. Hewson, C. A., Edbrooke, M. R. and Johnston, S. L. (2004) PMA induces the MUC5AC respiratory mucin in human bronchial epithelial cells, via PKC, EGF/TGF-alpha, Ras/Raf, MEK, ERK and Sp1-dependent mechanisms. J. Mol. Biol. 344, 683-695. https://doi.org/10.1016/j.jmb.2004.09.059
  6. Kim, K. C., McCracken, K., Lee, B. C., Shin, C. Y., Jo, M. J., Lee, C. J. and Ko, K. H. (1997) Airway goblet cell mucin: its structure and regulation of secretion. Eur. Respir. J. 11, 2644-2649.
  7. Ko, K. H., Lee, C. J., Shin, C. Y., Jo, M. J. and Kim, K. C. (1999) Inhibition of mucin release from airway goblet cells by polycationic peptides. Am. J. Physiol. 277, L811-L815.
  8. Lazarowski, E. R. and Boucher, R. C. (2009) Purinergic receptors in airway epithelia. Curr. Opin. Pharmacol. 9, 262-267. https://doi.org/10.1016/j.coph.2009.02.004
  9. Lee, C. J., Paik, S. H., Ko, K. H. and Kim, K. C. (2002) Effects of polycationic peptides on mucin release from airway goblet cells: relationship between polymer size and activity. Inflamm. Res. 51, 490-494. https://doi.org/10.1007/PL00012417
  10. Li, J. D., Dohrman, A. F., Gallup, M., Miyata, S., Gum, J. R., Kim, Y. S., Nadel, J. A., Prince, A. and Basbaum, C. B. (1997) Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease. Proc. Natl. Acad. Sci. USA. 94, 967-972. https://doi.org/10.1073/pnas.94.3.967
  11. Miyata, T., Kai, H., Saito, M., Okano, Y., Takahama, K., Nakagawa, M. and Kojima, S. (1986) Effects of ambroxol on pulmonary surfactant-analysis of the fatty acid composition of phosphatidylcholine in the sputum and normal respiratory tract fluid in rabbits. Nippon Yakurigaku Zasshi 88, 57-64. https://doi.org/10.1254/fpj.88.57
  12. Mutschler, E. and Derendorf, H. (1995) Drug actions, pp. 410-411, CRC Press, Boca Raton, Florida.
  13. Park, S. J., Kang, S. Y., Kim, N. S. and Kim, H. M. (2002) Phosphatidylinositol 3-kinase regulates PMA-induced differentiation and superoxide production in HL-60cells. Immunopharmacol. Immunotoxicol. 24, 211-226. https://doi.org/10.1081/IPH-120003751
  14. Rogers, D. F. and Barnes, P. J. (2006) Treatment of airway mucus hypersecretion. Ann. Med. 38, 116-125. https://doi.org/10.1080/07853890600585795
  15. Shao, M. X., Ueki, I. F. and Nadel, J. A. (2003) TNF-alpha converting enzyme mediated MUC5AC mucin expression in cultured human airway epithelial cells. Proc. Natl. Acad. Sci. USA. 100, 11618-11623. https://doi.org/10.1073/pnas.1534804100
  16. Stetinova, V., Herout, V. and Kvetina, J. (2004) In vitro and in vivo antioxidant activity of ambroxol. Clin. Exp. Med. 4, 152-158. https://doi.org/10.1007/s10238-004-0050-3
  17. Takeyama, K., Dabbagh, K., Shim, J. J., Dao-Pick, T., Ueki, I. F. and Nadel, J. A. (2000) Oxidative stress causes mucin synthesis via transactivation of epidermal growth factor receptor: role of neutrophils. J. Immunol. 164, 1546-1552. https://doi.org/10.4049/jimmunol.164.3.1546
  18. Takeyama, K., Dabbagh, K., Lee, H., Agusti, C., Lausier, J. A., Ueki, I. F., Grattan, K. M. and Nadel, J. A. (1999) Epidermal growth factor system regulates mucin production in airways. Proc. Natl. Acad. Sci. USA. 96, 3081-3086. https://doi.org/10.1073/pnas.96.6.3081
  19. Voynow, J. A. and Rubin, B. K. (2009) Mucins, mucus, and sputum. Chest 135, 505-512. https://doi.org/10.1378/chest.08-0412
  20. Wasano, K., Kim, K. C., Niles, R. M. and Brody, J.S. (1988) Membrane differentiation markers of airway epithelial secretory cells. J. Histochem. Cytochem. 36, 167-178. https://doi.org/10.1177/36.2.3335774
  21. Yuan-Chen Wu, D., Wu, R., Reddy, S. P., Lee, Y. C. and Chang, M. M. (2007) Distinctive epidermal growth factor receptor/extracellular regulated kinase-independent and -dependent signaling pathways in the induction of airway mucin 5B and mucin 5AC expression by phorbol 12-myristate 13-acetate. Am. J. Pathol. 170, 20-32. https://doi.org/10.2353/ajpath.2007.060452

Cited by

  1. Inhibitory Effect of an Urotensin II Receptor Antagonist on Proinflammatory Activation Induced by Urotensin II in Human Vascular Endothelial Cells vol.21, pp.4, 2013, https://doi.org/10.4062/biomolther.2013.051