• Title/Summary/Keyword: mppt

Search Result 601, Processing Time 0.032 seconds

A Novel MPPT Control of Photovoltaic Generation Using NFC Algorithm (NFC 알고리즘을 이용한 태양광 발전의 새로운 MPPT 제어)

  • Jang, Mi-Geum;Choi, Jung-Sik;Chung, Dong-Hwa
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.10
    • /
    • pp.1865-1874
    • /
    • 2011
  • This paper proposes a novel maximum power point tracking(MPPT) using a new fuzzy control(NFC) algorithm for robust in insolation variation. Maximum power point(MPP) of solar cell has to achieve for improving output efficiency because it is changed with insolation and temperature. Conventional MPPT controller such as constant voltage(CV), perturbation and observation(PO) and incremental conductance(IC) are researched. But these controller have the problem that is failure to MPP with environment changing. The proposed NFC controller is based the fuzzy control algorithm and able to robust control with environment changing. Also the proposed controller of PV system is modeled by PSIM and the response characteristics according to the parameter variation is compared and analyzed. The validity of this controller is proved through response results.

A study on the MPPT(Maximum Power Point Tracking) for Photovoltaic System using Neural Controller (신경 제어기에 의한 Photovoltaic System의 MPPT구현에 관한 연구)

  • Cha, In-Su;Choe, Jang-Gyun;Yu, Gwon-Jong
    • Solar Energy
    • /
    • v.18 no.1
    • /
    • pp.27-34
    • /
    • 1998
  • A maximum power point tracking(MPPT) converter, to enhance the converter efficiency is evaluated within the laboratory. The converter is controlled to track the maximum power point of the input photovoltaic(PV) source by varying the input and output parameter-conditions of irradiation, temperature, etc. The purpose of this paper is to develop a new maximum power point tracking(MPPT) using neural controller. Neural controller are applied to control of MPPT by boosting converter duty ratios compensation effect with 8 bit single chip 8051 microcontroller.

  • PDF

The Improved Maximum Power Point Tracking Algorithm under varying of irradiance (일사량 변화를 고려한 개선된 MPPT 알고리즘)

  • Lee, Gwui-Han;Jung, Young-Seok;Lee, Youn-Seop;Cha, Han-Ju;KO, Suk-Whan
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.6
    • /
    • pp.17-24
    • /
    • 2015
  • The MPPT(Maximum Power Point Tracking) techniques are employed in photovoltaic (PV) systems to maximize the PV array output power which depends on solar irradiance and temperature. The dynamic MPPT performance under varying irradiance conditions affects the impact on overall PV system performance. This paper presents the improved MPPT algorithm by the simulation comparison with other algorithms. The simulation models are made by the Matlab & Simulink. The result of simulation, the dynamic MPPT efficiency of proposed algorithm is higher than the other algorithms.

The analysis of MPPT algorithms (최대전력추종제어기법 비교 분석)

  • Lee, Kyung-Soo;Jung, Young-Seck;So, Jung-Hoon;Yu, Gwon-Jong;Choi, Jae-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.04a
    • /
    • pp.212-214
    • /
    • 2004
  • As the maximum power operating point(MPOP) of photovoltaic(PV) power generation systems changes with changing atmospheric conditions such as solar radiation and temperature, an important consideration in the design of efficient PV system is to track the MPOP correctly. Many maximum power point tracking(MPPT) techniques have been considered in the past, however, techniques using microprocessors with appropriate MPPT algorithms are favored because of their flexibility and compatibility with different PV arrays. Although the efficiency of these MPPT algorithms is usually high, it drops noticeably in case of rapidly changing atmospheric conditions. This paper analysed and researched the characteristics of three MPPT algorithms; P&O, Inc&Cond, ImP&O and simulated them with irradiance changing.

  • PDF

Design and implementation of 3kW Photovoltaic Power Conditioning System using a Current based (전류형 MPPT를 이용한 3kW 태양광 PCS 제어기 설계 및 구현)

  • Cha, Han-Ju;Lee, Sang-Hoey
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1075-1076
    • /
    • 2008
  • 이 논문에서는 전류형 MPPT(Maximum Power Point Tracking) 기법을 제안하고 적용하여 태양광 PCS(Power Conditioning System)의 기본적인 제어기를 설계하고 구현하였다. 기본적인 무변압기형 토폴로지에 전류 MPPT를 수행하고 이때에 얻어진 기준전류를 dc/dc 부스트 컨버터를 통해 dc-link에 전압을 충전하여 준다. 이 충전된 파워는 인버터를 통해 계통에 공급되게 된다. 이처럼 크게 MPPT제어, dc/dc컨트롤러, dc-link전류제어, 인버터 전류제어로 나뉘며 본 논문에서는 각 부분의 제어기를 살펴보고 실험을 통해 제어기의 성능을 확인하였다. 실험결과 제안된 전류 MPPT는 원활히 파워를 공급해주었고 dc/dc 부스터 컨버터를 거처 인버터 단까지 파워를 안정적으로 발전하는 것을 확인하였다.

  • PDF

MPPT Control of Photovoltaic system considering temperature characteristic of PV module (PV 모듈의 온도특성에 따른 태양광 발전시스템의 MPPT 제어)

  • Kang, Sung-Min;Ko, Jae-Sub;Seo, Tae-Young;Kim, Yu-Tak;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.950-951
    • /
    • 2015
  • This paper proposes MPPT control considering temperature characteristic of PV module. Conventional CV(Constant Voltage) and PO(Perturbation and Observation) methods have the weak problem about the insolation and temperature change. Thus, in this paper, in order to improve this problem, the optimal voltage and current is determined and the MPPT control is performed. MPPT algorithm proposed in this paper analyze the performance about insolation and temperature change and proves the validity.

  • PDF

Analog Control Algorithm for Maximum Power Trackers Employed in Photovoltaic Applications

  • Ji, Sang-Keun;Jang, Du-Hee;Hong, Sung-Soo
    • Journal of Power Electronics
    • /
    • v.12 no.3
    • /
    • pp.503-508
    • /
    • 2012
  • Tracking the Maximum Power Point (MPP) of a photovoltaic (PV) array is usually an essential part of a PV system. The problem addressed by Maximum Power Point Tracking (MPPT) techniques is to find the voltage $V_{MPP}$ or current $I_{MPP}$ at which a PV array should operate to generate the maximum power output $P_{MPP}$ under a given temperature and irradiance. MPPT control methods such as the perturb and observe method and the incremental conductance method require a microprocessor or DSP to determine if the duty cycle should be increased or not. This paper proposes a simple and fast analog MPPT method. The proposed control scheme tracks the MPP very quickly and its hardware implementation is simple when compared with the conventional techniques. The new algorithm can successfully track the MPP even in the case of rapidly changing atmospheric conditions. In addition, it has higher efficiency than ordinary algorithms.

A Novel Bang-Bang Control for the MPPT Employed in Photovoltaic Applications (One Switching Cycle 내에 최대전력점을 추종하는 태양광 발전의 MPPT 제어 시스템)

  • Ji, Sang-Keun;Kwon, Doo-Il;Yoo, Cheol-Hee;Han, Sang-Kyoo;Roh, Chung-Wook;Lee, Hyo-Bum;Hong, Sung-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.317-319
    • /
    • 2008
  • 태양전지는 일사량 및 온도에 의해 출력 특성이 변화하여 최대전력을 얻을 수 있는 위치도 변화한다. 따라서 태양전지의 동작점을 최대 전력점에서 동작하게 하는 최대전력점 추적(MPPT, Maximum Power Point Tracking) 이 필요하다. 본 논문에서는 One switching cycle 내에 최대전력점을 추종하는 MPPT 제어 방법을 제안한다. 이 방식은 빠르게 최대 동작점을 찾을 수 있고 고효율을 가지며 다른 방식에 비해 구성이 간단하다. 새로 제안된 제어기법의 타당성을 검증하기 위하여 MPPT 실험을 수행하였다.

  • PDF

A dP/dV Feedback-Controlled MPPT Method for Photovoltaic Power System Using II-SEPIC

  • Park, Han-Eol;Song, Joong-Ho
    • Journal of Power Electronics
    • /
    • v.9 no.4
    • /
    • pp.604-611
    • /
    • 2009
  • A dP/dV feedback-controlled MPPT (Maximum Power Point Tracking) method for photovoltaic power systems using II-SEPIC (Isolated Inverse-SEPIC; Single Ended Primary Inductance Converter) is presented and a current-mode dP/dV feedback-controlled MPPT method is devised to apply for the PV power converter system. A control strategy for the current-mode dP/dV feedback control system is developed in this paper and the proposed MPPT shows relatively satisfactory dynamics against rapidly changing insolation conditions. In order to verify the validity and effectiveness of the proposed method, simulations and experiments of the PV power system using II-SEPlC converter are performed. These simulation and experiment results show that the proposed method enables the PV power system to extract maximum power from the photovoltaic module against the solar insolation variation.

Sensorless MPPT Control using a Boost Converter and a Grid Side Inverter in Wind Power Generation Systems (Boost 컨버터와 계통연계 인버터를 이용한 풍력발전의 센서리스 MPPT 제어)

  • Kim, Do-Yoon;Lee, Jun-Min;Kim, Young-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1372-1377
    • /
    • 2011
  • This paper proposes the control method of MPPT(maximum power point tracking) for the wind energy generation system using the duty ratio control of boost type DC-DC converter. For a lower cost and a higher reliability, the wind and the generator velocity sensors are removed. MPPT control is implemented by changing the duty ratio of the boost converter. Chain rule is applied by using each function. The grid side inverter is controlled to regulate unity power factor. The proposed control method was analyzed mathematically and verified by the computer simulation using PSIM.