• Title/Summary/Keyword: moving object tracking

Search Result 530, Processing Time 0.022 seconds

Feature-based Object Tracking using an Active Camera (능동카메라를 이용한 특징기반의 물체추적)

  • 정영기;호요성
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.694-701
    • /
    • 2004
  • In this paper, we proposed a feature-based tracking system that traces moving objects with a pan-tilt camera after separating the global motion of an active camera and the local motion of moving objects. The tracking system traces only the local motion of the comer features in the foreground objects by finding the block motions between two consecutive frames using a block-based motion estimation and eliminating the global motion from the block motions. For the robust estimation of the camera motion using only the background motion, we suggest a dominant motion extraction to classify the background motions from the block motions. We also propose an efficient clustering algorithm based on the attributes of motion trajectories of corner features to remove the motions of noise objects from the separated local motion. The proposed tracking system has demonstrated good performance for several test video sequences.

An Ultrasonic Positioning System Using Zynq SoC (Zynq-SoC를 이용한 초음파 위치추적 시스템)

  • Kang, Moon-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1250-1256
    • /
    • 2017
  • In this research, a high-performance ultrasonic positioning system is proposed to track the positions of an indoor mobile object. Composed of an ultrasonic sender (mobile object) and a receiver (anchor), the system employs three ultrasonic time-off-flights (TOFs) and trilateration to estimate the positions of the object with an accuracy of sub-centimeter. On the other hand, because ultrasonic waves are interfered by temperature, wind and various obstacles obstructing the propagation while propagating in air, ultrasonic pulse debounce technique and Kalman filter were applied to TOF and position calculation, respectively, to compensate for the interference and to obtain more accurate moving object position. To perform tasks in real time, ultrasonic signals are processed full-digitally with a Zynq SoC, and as a software design tool, Vivado IDE(integrated design environment) is used to design the whole signal processing system in hierarchical block diagrams. And, a hardware/software co-design is implemented, where the digital circuit portion is designed in the Zynq's fpga and the software portion is c-coded in the Zynq's processors by using the baremetal multiprocessing scheme in which the c-codes are distributed to dual-core processors, cpu0 and cpu1. To verify the usefulness of the proposed system, experiments were performed and the results were analyzed, and it was confirmed that the moving object could be tracked with accuracy of sub-cm.

An Innovative Approach to Track Moving Object based on RFID and Laser Ranging Information

  • Liang, Gaoli;Liu, Ran;Fu, Yulu;Zhang, Hua;Wang, Heng;Rehman, Shafiq ur;Guo, Mingming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.1
    • /
    • pp.131-147
    • /
    • 2020
  • RFID (Radio Frequency Identification) identifies a specific object by radio signals. As the tag provides a unique ID for the purpose of identification, RFID technology effectively solves the ambiguity and occlusion problem that challenges the laser or camera-based approach. This paper proposes an approach to track a moving object based on the integration of RFID and laser ranging information using a particle filter. To be precise, we split laser scan points into different clusters which contain the potential moving objects and calculate the radial velocity of each cluster. The velocity information is compared with the radial velocity estimated from RFID phase difference. In order to achieve the positioning of the moving object, we select a number of K best matching clusters to update the weights of the particle filter. To further improve the positioning accuracy, we incorporate RFID signal strength information into the particle filter using a pre-trained sensor model. The proposed approach is tested on a SCITOS service robot under different types of tags and various human velocities. The results show that fusion of signal strength and laser ranging information has significantly increased the positioning accuracy when compared to radial velocity matching-based or signal strength-based approaches. The proposed approach provides a solution for human machine interaction and object tracking, which has potential applications in many fields for example supermarkets, libraries, shopping malls, and exhibitions.

Web-based Moving Object Tracking by Controlling Pan-Tilt Camera using Motion Detection (움직임 검출의 캠 제어에 의한 웹기반 이동 객체 추적)

  • 박천주;박희정;이재협;전병민
    • The Journal of the Korea Contents Association
    • /
    • v.2 no.2
    • /
    • pp.17-26
    • /
    • 2002
  • In this paper, we suggest a method to acquire the moving object centered video by panning and tilting a camera automatically according to motion vectors calculated by detecting the motion of a moving object on video steam. We create a difference image by estimating the intensity difference at the grid points of neighboring frames. And we detect the motion using both horizontal projection histogram and vertical projection histogram and decide the center of motion part. Then we calculate a new direction and degree of the motion by comparing coordinates at the center of current motion and the center of previous motion. By controling the RCM using these Motion vectors, we can get video stream positioned unwire object on the center of video frame. Through the experiments, we could get a moving object centered video stream continuously arid monitor remotely by implementing sever/client architecture based on the web.

  • PDF

Fast Reference Region Adjustment Using Sizing Factor Generation in Correlation-Based Image Tracking

  • Sung, Si-Hun;Chien, Sung-Il
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.2
    • /
    • pp.230-238
    • /
    • 1998
  • When size and shape of moving object have been changed, a correlator often accumulates walk-off error. A success of correlation-based tracking largely depends on choosing suitable window size and position and thus transferring the proper reference image to the next frame. For this, we propose the Adaptive Window Algorithm with Four-Direction Sizing Factors (AWA-FSF) for fast adjusting a reference region to enhance reliability of correlation-based image tracking in complex cluttered environments. Since the AWA-FSF is capable of adjusting a reference image size more rapidly and properly, we can minimize the influence of complex background and clutter. In addition, we can finely tune the center point of the reference image repeatedly after main tracking process. Thus we have increased stability and reliability of correlation-based image tracking. We tested performance of the AWA-FSF using 45 real image sequences made of over 3400 images and had the satisfied results for most of them.

  • PDF

Real-time face tracking for high-resolution intelligent surveillance system (고해상도 지능형 감시시스템을 위한 실시간 얼굴영역 추적)

  • 권오현;김상진;김영욱;백준기
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.317-320
    • /
    • 2003
  • In this paper, we present real-time, accurate face region detection and tracking technique for an intelligent surveillance system. It is very important to obtain the high-resolution images, which enables accurate identification of an object-of-interest. Conventional surveillance or security systems, however, usually provide poor image quality because they use one or more fixed cameras and keep recording scenes without any clue. We implemented a real-time surveillance system that tracks a moving person using pan-tilt-zoom (PTZ) cameras. While tracking, the region-of-interest (ROI) can be obtained by using a low-pass filter and background subtraction. Color information in the ROI is updated to extract features for optimal tracking and zooming. The experiment with real human faces showed highly acceptable results in the sense of both accuracy and computational efficiency.

  • PDF

Precision Position Estimation for Tracking the Moving Object (이동물체의 추적을 위한 정밀 위치추정)

  • In, Chu-Sik;Lee, Ja-Sung;Hong, Suk-Kyo;Koh, Young-Gil
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.335-337
    • /
    • 1994
  • The correlation tracker developed by John M. Fitts in 1979 is the most complex to mechanize but provides the best tracking performance in a low SNR condition. Correlation tracker would rewove the requirements for optimizing threshold and has no need to know information about the target. But if the displacement of the target is large, the tracking error of the correlation tracker tends to diverge. In this paper, we suggest a precision image tracking algorithm which improves the tracking performance via iterative application of the matched filter estimation algorithm.

  • PDF

Robot Driving System and Sensors Implementation for a Mobile Robot Capable of Tracking a Moving Target (이동물체 추적 가능한 이동형 로봇구동 시스템 설계 및 센서 구현)

  • Myeong, Ho Jun;Kim, Dong Hwan
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.3_1spc
    • /
    • pp.607-614
    • /
    • 2013
  • This paper proposes a robot driving system and sensor implementation for use with an education robot. This robot has multiple functions and was designed so that children could use it with interest and ease. The robot recognizes the location of a user and follows that user at a specific distance when the robot and user communicate with each other. In this work, the robot was designed and manufactured to evaluate its performance. In addition, an embedded board was installed with the purpose of communicating with a smart phone, and a camera mounted on the robot allowed it to monitor the environment. To allow the robot to follow a moving user, a set of sensors combined with an RF module and ultrasonic sensors were adopted to measure the distance between the user and the robot. With the help of this ultrasonic sensors arrangement, the location of the user couldbe identified in all directions, which allowed the robot to follow the moving user at the desired distance. Experiments were carried out to see how well the user's location could be recognized and to investigate how accurately the robot trackedthe user, which eventually yielded a satisfactory performance.

Positive Random Forest based Robust Object Tracking (Positive Random Forest 기반의 강건한 객체 추적)

  • Cho, Yunsub;Jeong, Soowoong;Lee, Sangkeun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.6
    • /
    • pp.107-116
    • /
    • 2015
  • In compliance with digital device growth, the proliferation of high-tech computers, the availability of high quality and inexpensive video cameras, the demands for automated video analysis is increasing, especially in field of intelligent monitor system, video compression and robot vision. That is why object tracking of computer vision comes into the spotlight. Tracking is the process of locating a moving object over time using a camera. The consideration of object's scale, rotation and shape deformation is the most important thing in robust object tracking. In this paper, we propose a robust object tracking scheme using Random Forest. Specifically, an object detection scheme based on region covariance and ZNCC(zeros mean normalized cross correlation) is adopted for estimating accurate object location. Next, the detected region will be divided into five regions for random forest-based learning. The five regions are verified by random forest. The verified regions are put into the model pool. Finally, the input model is updated for the object location correction when the region does not contain the object. The experiments shows that the proposed method produces better accurate performance with respect to object location than the existing methods.

The antenna azimuth correction method for a special purpose mobile video terminal tracking antenna system implementation (특수목적을 위한 이동형 영상 터미널 장비의 추적안테나 시스템에 적용하기 위한 방위각보정 알고리즘 구현)

  • Kim, Nam-Woo;Hur, Chang-Wu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.11
    • /
    • pp.2541-2546
    • /
    • 2013
  • In this paper, we proposed on the azimuth correction method for a line-of-sight data-link tracking antenna system. Tracking antenna system is essential to maintain line-of-sight between moving object and data-link equipment. In order to calculate the azimuth and elevation between the moving object and antenna system, we used GPS data. also to match the each coordinate systems, we used geomagnetic sensor or beacon. However, the geomagnetic disturbance-prone terrain in places difficult to correct calibration. The first step, finds the location of the strongest RF signal, we should remember the difference between the reference point and the detected position of the antenna. The second step, we could communicate each other. And the azimuth angle is calculated by GPS values. Despite the geomagnetic interference, we can correct the azimuth angle quickly and easily.