• Title/Summary/Keyword: moving object

Search Result 1,606, Processing Time 0.03 seconds

Object Tracking Algorithm for a Mobile Robot Using Ultrasonic Sensors

  • Park, M.G.;Lee, M.C.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.44.5-44
    • /
    • 2001
  • This paper proposes the algorithm which a mobile robot tracks the object captured by ultrasonic sensors of the robot and automatically generates a path according to the object In the proposed algorithm, a robot detects movements of the object as using ultrasonic sensors and then the robot follows the moving object. This algorithm simplifies robot path planning. The eight ultrasonic sensors on the robot capture distances between the robot and objects. The robot detects the movements of the object by using the changes of the distances captured by ultrasonic sensors. The target position of the robot is determined as the position of the detected moving object. The robot follows the object according to this movement strategy. The effectiveness of the proposed algorithm is verified through experiments.

  • PDF

A Study on the Moving Object Tracking Algorithm of Static Camera and Active Camera in Environment (고정카메라 및 능동카메라 환경에서 이동물체 추적 알고리즘에 관한 연구)

  • 남기환;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.2
    • /
    • pp.344-352
    • /
    • 2003
  • An effective algorithm for implementation of which detects moving object from image sequences. predicts the direction of it. and drives the camera in real time is proposed. In static camera, for robust motion detection from a dynamic background scene, the proposed algorithm performs statistical modeling of moving objects and background, and trains the statistical modeling of moving objects and background, and trains the statistical feature of background with the initial parts of sequence which have no moving objects. Active camera moving objects are segmented by following procedure, an improved order adaptive lattice structured linear predictor is used. The proposed algorithm shows robust object tracking results in the environment of static or active camera. It can be used for the unmanned surveillance system, traffic monitoring system, and autonomous vehicle.

Recognition of Moving Objects in Mobile Robot with an Omnidirectional Camera (전방위카메라를 이용한 이동로봇에서의 이동물체 인식)

  • Kim, Jong-Cheol;Kim, Young-Myoung;Suga, Yasuo
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.2
    • /
    • pp.91-98
    • /
    • 2008
  • This paper describes the recognition method of moving objects in mobile robot with an omnidirectional camera. The moving object is detected using the specific pattern of an optical flow in omnidirectional image. This paper consists of two parts. In the first part, the pattern of an optical flow is investigated in omnidirectional image. The optical flow in omnidirectional image is influenced on the geometry characteristic of an omnidirectional camera. The pattern of an optical flow is theoretically and experimentally investigated. In the second part, the detection of moving objects is presented from the estimated optical flow. The moving object is extracted through the relative evaluation of optical flows which is derived from the pattern of optical flow. In particular, Focus-Of-Expansion (FOE) and Focus-Of-Contraction (FOC) vectors are defined from the estimated optical flow. They are used as reference vectors for the relative evaluation of optical flows. The proposed algorithm is performed in four motions of a mobile robot such as straight forward, left turn, right turn and rotation. Experimental results using real movie show the effectiveness of the proposed method.

  • PDF

Nearest Neighbor Query Processing using the Direction of Mobile Object (모바일 객체의 방향성을 고려한 최근접 질의 처리)

  • Lee, Eung-Jae;Jung, Young-Jin;Choi, Hyon-Mi;Ryu, Keun-Ho;Lee, Seong-Ho
    • Journal of Korea Spatial Information System Society
    • /
    • v.6 no.1 s.11
    • /
    • pp.59-71
    • /
    • 2004
  • Nearest neighbor query retrieves nearest located target objects, and is very frequently used in mobile environment. In this paper we propose a novel neatest neighbor query processing technique that is able to retrieve nearest located target object from the user who is continuously moving with a direction. The proposed method retrieves objects using the direction property of moving object as well as euclidean distance to target object. The proposed method is applicable to traffic information system, travel information system, and location-based recommendation system which require retrieving nearest located object.

  • PDF

A Robust Algorithm for Moving Object Segmentation in Illumination Variation (조명변화에 강인한 에지기반의 움직임 객체 추출 기법)

  • Do, Jae-Su
    • Convergence Security Journal
    • /
    • v.7 no.1
    • /
    • pp.1-10
    • /
    • 2007
  • Surveillance system with the fixed field of view generally has an identical background and is easy to extract and segment a moving object. However, it is difficult to extract the object when the gray level of the background is varied due to illumination condition in the real circumstance. In this paper we propose the segmentation algorithm to extract effectively the object in spite of the illumination change. In order to minimize the effect of illumination, the proposed algorithm is composed of three modes according to the background generation and the illuminational change. Then the object is finally obtained by using projection and the morphological operator in post-processing. A good segmentation performance is demonstrated by the simulation result.

  • PDF

Tracking a Moving Object Using an Active Contour Model Based on a Frame Difference Map (차 영상 맵 기반의 능동 윤곽선 모델을 이용한 이동 물체 추적)

  • 이부환;김도종;최일;전기준
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.5
    • /
    • pp.153-163
    • /
    • 2004
  • This paper presents a video tracking method for a deformable moving object using an active contour model in the image sequences. It is quite important to decide the local convergence directions of the contour points for correctly extracting the boundary of the moving object with deformable shape. For this purpose, an energy function for the active contour model is newly proposed by adding a directional energy term using a frame difference map to tile Greedy algorithm. In addition, an updating rule of tile frame difference map is developed to encourage the stable convergence of the contour points. Experimental results on a set of synthetic and real image sequences showed that the proposed method can fully track the deformable object while extracting the boundary of the object elaborately in every frame.

Development of an Object Collision Detection Algorithm for Prevention of Collision Accidents on Living Roads (생활도로에서의 충돌사고 예방을 위한 객체 충돌 감지 알고리즘 개발)

  • Seo, Myoung Kook;Shin, Hee Young;Jeong, Hwang Hun;Chae, Jun Seong
    • Journal of Drive and Control
    • /
    • v.19 no.3
    • /
    • pp.23-31
    • /
    • 2022
  • Traffic safety issues have recently been seriously magnified, due to child deaths in apartment complexes and parking lots. Accordingly, traffic safety technologies are being developed to recognize dangerous situations on living roads and to provide warning services. In this study, a collision detection algorithm was developed to prevent collision accidents between moving objects, by using object type and location information provided from CCTV monitoring devices. To determine the exact collision between moving objects, an object movement model was developed to predict the range of movement by considering the moving characteristics of the object, and a collision detection algorithm was developed to efficiently analyze the presence and location of the collision. The developed object movement model as well as the collision detection algorithm were simulated, in a virtual space of an actual living road to verify performance and derive supplementary matters.

Recognition and tracking system of moving objects based on artificial neural network and PWM control

  • Sugisaka, M.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.573-574
    • /
    • 1992
  • We developed a recognition and tracking system of moving objects. The system consists of one CCD video camera, two DC motors in horizontal and vertical axles with encoders, pluse width modulation(PWM) driving unit, 16 bit NEC 9801 microcomputer, and their interfaces. The recognition and tracking system is able to recognize shape and size of a moving object and is able to track the object within a certain range of errors. This paper presents the brief introduction of the recognition and tracking system developed in our laboratory.

  • PDF

Adaptive Active Contour Control for the Moving Target Tracking in the Image Sequence (연속영상에서 이동물체 추적을 위한 적응형 컨투어 제어기법)

  • 김도종;이부환
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1992-1995
    • /
    • 2003
  • An adaptive active contour algorithm which shows stable object tracking performance under the moving or deformable environments, is proposed. In order to cope with local deformation of the object, an energy map is generated from the difference of the consecutive images and a new energy function based on the energy map is presented. The algorithm is evaluated on a set of artificial and real images to verify the efficiencies and test results show the stable tracking performance for the moving objects.

  • PDF

Tracking Method for Moving Object Using Depth Picture (깊이 화면을 이용한 움직임 객체의 추적 방법)

  • Kwon, Soon-Kak;Kim, Heung-Jun
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.4
    • /
    • pp.774-779
    • /
    • 2016
  • The conventional methods using color signal for tracking the movement of the object require a lot of calculation and the performance is not accurate. In this paper, we propose a method to effectively track the moving objects using the depth information from a depth camera. First, it separates the background and the objects based on the depth difference in the depth of the screen. When an object is moved, the depth value of the object becomes blurred because of the phenomenon of Motion Blur. In order to solve the Motion Blur, we observe the changes in the characteristics of the object (the area of the object, the border length, the roundness, the actual size) by its velocity. The proposed algorithm was implemented in the simulation that was applied directly to the tracking of a golf ball. We can see that the estimated value of the proposed method is accurate enough to be very close to the actual measurement.