• Title/Summary/Keyword: moving load

Search Result 697, Processing Time 0.035 seconds

A Study on the Supportive Stiffness in Transitional Zones through Moving Load-Based Three-Dimensional Modeling (이동하중과 3차원 모델링을 통한 접속부 지지강성연구)

  • Woo, Hyeun-Joon;Lee, Seung-Ju;Kang, Yun-Suk;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1542-1549
    • /
    • 2011
  • The Transitional zone between bridge abutment and earthwork is one of the representative vulnerable zones in railway where differential settlements may take place due to the different supportive stiffness. Although transitional zones are managed with stricter standards than those of the other earthwork zones either in the design and construction stages, it is very difficult to prevent differential settlement perfectly. A three-dimensional numerical analyses were performed by applying train moving load in this study. The analytical model including abutments and earthwork zones was constituted with rail, sleepers, track concrete layer (TCL), hydraulic stabilized base (HSB), reinforced road bed, and road bed using railway and road base structure. The clamp connecting the rail and sleeper were also modeled as the element with spring coefficient. The train wheel is modeled in the actual size and moved on the rail with 300 km/hr speed. The deformation characteristics at each point of the rail and the ground were considered in detail when moving the train wheel. The analysis results were compared with those from the two-dimensional analysis without considering moving load. The research results show that displacement and stress were greater in the three-dimensional analysis than in other analyses, and the three-dimensional analysis with moving load should be performed to evaluate railway performance.

  • PDF

Dynamic analysis of bridge girders submitted to an eccentric moving load

  • Vieira, Ricardo F.;Lisi, Diego;Virtuoso, Francisco B.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.1
    • /
    • pp.173-203
    • /
    • 2014
  • The cross-section warping due to the passage of high-speed trains can be a relevant issue to consider in the dynamic analysis of bridges due to (i) the usual layout of railway systems, resulting in eccentric moving loads; and (ii) the use of cross-sections prone to warping deformations. A thin-walled beam formulation for the dynamic analysis of bridges including the cross section warping is presented in this paper. Towards a numerical implementation of the beam formulation, a finite element with seven degrees of freedom is proposed. In order to easily consider the compatibility between elements, and since the coupling between flexural and torsional effects occurs in non-symmetric cross-sections due to dynamic effects, a single axis is considered for the element. The coupled flexural-torsional free vibration of thin-walled beams is analysed through the presented beam model, comparing the results with analytical solutions presented in the literature. The dynamic analysis due to an eccentric moving load, which results in a coupled flexural-torsional vibration, is considered in the literature by analytical solutions, being therefore of a limited applicability in practice engineering. In this paper, the dynamic response due to an eccentric moving load is obtained from the proposed finite element beam model that includes warping by a modal analysis.

Experimental Study on Dynamic Responses of Plate-Girder Bridges under Moving Loads (이동하중을 받는 판형교의 동적 거동에 대한 실험적 연구)

  • Yhim, Sung Soon
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.407-416
    • /
    • 2000
  • This paper presents the dynamical responses of the plate girder bridge subjected to moving load by experimental method. The upper slab of the plate girder bridges is modelled to the plate element and the girder to the beam element. The small-scaled vehicle model is manufactured as moving load and the acryl-bridge model as the plate-girder bridge. The dynamic responses of the plate-girder bridges under the moving load are obtained by the strain gauges, displacement measurements, accelerometer, and dynamic strain measurement. The maximum dynamic responses from the measured data are compared with those from the finite element method. The experimental model test can be used to obtain to the dynamic responses of the plate-girder bridges.

  • PDF

Vibration Analysis of Multi-Span Timoshenko Beams Due to Moving Loads (여러 스팬을 갖는 티모센코 보 구조물의 이동하중에 의한 진동 해석)

  • Hong, Seong-Uk;Kim, Jong-Uk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.23 no.11 s.170
    • /
    • pp.2058-2066
    • /
    • 1999
  • The present paper proposes a new dynamic analysis method for multi-span Timoshenko beam structures supported by joints with damping subject to moving loads. An exact dynamic element matrix method is adopted to model Timoshenko beam structures. A generalized modal analysis method is applied to derive response formulae for beam structures subject to moving loads. The proposed method offers an exact and closed form solution. Two numerical examples are provided for validating and illustrating the proposed method. In the first numerical example, a single span beam with multiple moving loads is considered. A dynamic analysis on a multi-span beam under a moving load is considered as the second example, in which the flexibility and damping of supporting joints are taken into account. The numerical study proves that the proposed method is useful for the vibration analysis of multi-span beam-hype structures by moving loads.

Nondimensional Parametric Study of a Timoshenko Rotating Shaft Subject to Moving Mass and Compressive Axial Forces (이동질량과 압축력을 받는 티모센코 회전축의 무차원 변수 연구)

  • Park, Yong-Suk;Hong, Sung-Chul
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.12
    • /
    • pp.1201-1207
    • /
    • 2007
  • The Timoshenko beam theories are used to model the rotating shaft. The nondimensional equations of motion for the rotating shaft subjected to moving mass and compressive axial forces are derived by using Hamilton's principle. Influence of system parameters such as the speed ratio. the mass ratio and the Rayleigh coefficient is discussed on the response of the moving system. The effects of compressive axial forces are also included in the analysis. The results are presented and compared with the available solutions of a rotating shaft subject to a moving mass and a moving load.

A Study on the Deformation of the Moving Pressure Plate in a Balanced Type Vane Pump (압력 평형형 베인 펌프의 가동 압력판 변형에 관한 연구)

  • 한동철;조명래;박신희;최상현
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.04a
    • /
    • pp.277-285
    • /
    • 1998
  • This paper presents the deformation characteristics of the moving pressure plate in a balanced type vane pump that widely used automotive power steering systems. Moving pressure plate can control the clearance between rotor and plate in accordance with load pressure variation; it always guarantees that pump to have optimal volumetric efficiency. In this paper, firstly, we calculate the acting force on the pressure plate, which is used to determine the angular position and load condition for analyzing the deformation of pressure plate. Secondary, finite element method is used for the deformation analysis. As results of acting force analysis, it is found that maximum difference of forces occurs at angular position 28$\circ$ from the small arc center of cam ring and load pressure is a dominant factor to affect acting force variation. The deformation of pressure plate increases as load pressure increases. At high load pressure, the deformation of pressure plate becomes larger than the initial clearance between rotor and plate. Therefore, it is required to design the plate for controlling the deformation.

  • PDF

Assessment of the Degree of Fatigue Damage in Steel Plate-Girder Railway Bridges According to Span Length (지간장에 따른 강판형 철도교의 피로피해도 평가)

  • Jung, Young-Hwa;Kim, Ik-Gyeom;Kim, Ji-Hun;Nam, Wang-Hyone
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.313-320
    • /
    • 1999
  • Steel railway bridge gets vibration from moving load ; additionally, this kind of moving load is going to be a sufficient reason, which causes fatigue damage to steel railway bridge. Fatigue damage and stress curve were raised by moving load depends on span length in steel railway bridge. In other words, stress curve appears index regarding every axial load in short span, but self weight lets stress curve's change decrease in proportion to increasing span length. Thereby, we have studied that how the steel railway bridge appear fatigue damage in proportion to span length of steel railway bridge. Dynamic strain was measured in 4 steel plate-girder railway bridge during the trains was passing, which is located on the line of Kyoung-chun railway. And time history response analysis has been done in order to ensure actual survey. The results of this study show the decreased of the fatigue damage in steel railway bridge according to length of span. This paper ends is bases research of fatigue design in steel railway bridges according to span length.

  • PDF

Short-term Electric Load Prediction Considering Temperature Effect (단파효과를 고려한 단기전력 부하예측)

  • 박영문;박준호
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.5
    • /
    • pp.193-198
    • /
    • 1986
  • In this paper, 1-168 hours ahead load prediction algorithm is developed for power system economic weekly operation. Total load is composed of three components, which are base load, week load and weather-sensitive load. Base load and week load are predicted by moving average and exponential smoothing method, respectively. The days of moving average and smoothing constant are optimally determined. Weather-sensitive load is modeled by linear form. The paramiters of weather load model are estimated by exponentially weighted recursive least square method. The load prediction of special day is very tedious, difficult and remains many problems which should be improved. Test results are given for the day of different types using the actual load data of KEPCO.

  • PDF

The Effects of Ramp Gradients and Pushing-Pulling Techniques on Lumbar Spinal Load in Healthy Workers

  • Pinupong, Chalearmpong;Jalayondeja, Wattana;Mekhora, Keerin;Bhuanantanondh, Petcharatana;Jalayondeja, Chutima
    • Safety and Health at Work
    • /
    • v.11 no.3
    • /
    • pp.307-313
    • /
    • 2020
  • Background: Many tasks in industrial and health care setting are involved with pushing and pulling tasks up or down on a ramp. An efficient method of moving cart which reduces the risk of low back pain should be concerned. This study aimed to investigate the effects of handling types (HTs) and slope on lumbar spinal load during moving a cart on a ramp. We conducted a 2 × 2 × 4 factorial design with three main factors: 2 HTs, 2 handling directions of moving a cart and 4 degrees of ramp slope. Methods: Thirty healthy male workers performed 14 tasks consist of moving a cart up and down on the ramp of 0°, 10°, 15°, and 20° degrees with pushing and pulling methods. Joint angles from a 3D motion capture system combined with subject height, body weight, and hand forces were used to calculate the spinal load by the 3DSSPP program. Results: Our results showed significant effect of HT, handling directions and slope on compression and shear force of the lumbar spine (p < 0.001). When the ramp gradient increased, the L4/5 compression forces increased in both pushing and pulling (p < 0.001) Shear forces increased in pulling and decreased in pushing in all tasks. At high slopes, pulling generated more compression and shear forces than that of pushing (p < 0.01). Conclusion: Using the appropriate technique of moving a cart on the ramp can reduce the risk of high spinal load, and the pushing is therefore recommended for moving a cart up/down on ramp gradients.

Three-dimensional analysis of flexible pavement in Nepal under moving vehicular load

  • Ban, Bijay;Shrestha, Jagat K.;Pradhananga, Rojee;Shrestha, Kshitij C.
    • Advances in Computational Design
    • /
    • v.7 no.4
    • /
    • pp.371-393
    • /
    • 2022
  • This paper presents a three-dimensional flexible pavement simulated in ANSYS subjected to moving vehicular load on the surface of the pavement typical for the road section in Nepal. The adopted finite element (FE) model of pavement is validated with the classical theoretical formulations for half-space pavement. The validated model is further utilized to understand the damping and dynamic response of the pavement. Transient analysis of the developed FE model is done to understand the time varying response of the pavement under a moving vehicle. The material properties of pavement considered in the analysis is taken from typical road section used in Nepal. The response quantities of pavement with nonlinear viscoelastic asphalt layer are found significantly higher compared to the elastic pavement counterpart. The structural responses of the pavement decrease with increase in the vehicle speed due to less contact time between the tires of the vehicle and the road pavement.