• Title/Summary/Keyword: moving least squares method

Search Result 111, Processing Time 0.023 seconds

Prediction of Ozone Formation Based on Neural Network and Stochastic Method (인공신경망 및 통계적 방법을 이용한 오존 형성의 예측)

  • Oh, Sea Cheon;Yeo, Yeong-Koo
    • Clean Technology
    • /
    • v.7 no.2
    • /
    • pp.119-126
    • /
    • 2001
  • The prediction of ozone formation was studied using the neural network and the stochastic method. Parameter estimation method and artificial neural network(ANN) method were employed in the stochastic scheme. In the parameter estimation method, extended least squares(ELS) method and recursive maximum likelihood(RML) were used to achieve the real time parameter estimation. Autoregressive moving average model with external input(ARMAX) was used as the ozone formation model for the parameter estimation method. ANN with 3 layers was also tested to predict the ozone formation. To demonstrate the performance of the ozone formation prediction schemes used in this work, the prediction results of ozone formation were compared with the real data. From the comparison it was found that the prediction schemes based on the parameter estimation method and ANN method show an acceptable accuracy with limited prediction horizon.

  • PDF

Analysis of Piezoelectric Ceramic Multi-layer Actuators Based on the Electro-mechanical Coupled Meshless Method (전기-기계 결합 하중을 받는 압전 세라믹 다층 작동기의 무요소 해석)

  • Kim, Hyun-Chul;Guo, Xianghua;Kim, Won-Seok;Fang, Daining;Lee, Jung-Ju
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.2
    • /
    • pp.101-108
    • /
    • 2007
  • This paper presents an efficient meshless method for analyzing cracked piezoelectric structures subjected to mechanical and electrical loading. The method employs an element free Galerkin (EFG) formulation and an enriched basic function as well as special shape functions that contain discontinuous derivatives. Based on the moving least squares (MLS) interpolation approach, The EFG method is one of the promising methods for dealing with problems involving progressive crack growth. Since the method is meshless and no element connectivity data are needed, the burdensome remeshing procedure required in the conventional finite element method (FEM) is avoided. The numerical results show that the proposed method yields an accurate near-tip stress field in an infinite piezoelectric plate containing an interior hole. Another example is to study a ceramic multilayer actuator. The proposed model was found to be accurate in the simulation of stress and electric field concentrations due to the abrupt end of an internal electrode.

Thermoelastic static and vibrational behaviors of nanocomposite thick cylinders reinforced with graphene

  • Moradi-Dastjerdi, Rasool;Behdinan, Kamran
    • Steel and Composite Structures
    • /
    • v.31 no.5
    • /
    • pp.529-539
    • /
    • 2019
  • Current paper deals with thermoelastic static and free vibrational behaviors of axisymmetric thick cylinders reinforced with functionally graded (FG) randomly oriented graphene subjected to internal pressure and thermal gradient loads. The heat transfer and mechanical analyses of randomly oriented graphene-reinforced nanocomposite (GRNC) cylinders are facilitated by developing a weak form mesh-free method based on moving least squares (MLS) shape functions. Furthermore, in order to estimate the material properties of GRNC with temperature dependent components, a modified Halpin-Tsai model incorporated with two efficiency parameters is utilized. It is assumed that the distributions of graphene nano-sheets are uniform and FG along the radial direction of nanocomposite cylinders. By comparing with the exact result, the accuracy of the developed method is verified. Also, the convergence of the method is successfully confirmed. Then we investigated the effects of graphene distribution and volume fraction as well as thermo-mechanical boundary conditions on the temperature distribution, static response and natural frequency of the considered FG-GRNC thick cylinders. The results disclosed that graphene distribution has significant effects on the temperature and hoop stress distributions of FG-GRNC cylinders. However, the volume fraction of graphene has stronger effect on the natural frequencies of the considered thick cylinders than its distribution.

Simpson Style Caricature based on MLS

  • Lee, Jiye;Byun, Hae Won
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.6
    • /
    • pp.1449-1462
    • /
    • 2013
  • We present a novel approach to producing facial caricature with Simpson cartoon style based on Moving Least Squares (MLS). We take advantage of employing the caricature stylization rule of caricature artist, Justin. Our method allows Simpson-style cartoon character similar to user's features by using Justin's technique, which is a set of caricature stylization rules. Our method transforms input photo image into Simpson style caricature by using MLS approximation. The unique characteristics of user in the photo can be detected by comparing to the mean face feature and the input face feature extracted by AAM(Active Appearance Model). To exaggerate the detected unique characteristics, we set up the exaggeration rules using Justin's technique. In addition, during the cartooning process, user's hairs and accessories are used to the deformed image to make a close resemblance. Our method preserves the reliable and stylized caricature through the exaggeration rules of the actual caricature artist's techniques. From this study, we can easily create a Simpson-style cartoon caricature to resemble user's features by combining a caricature with existing cartoon researches.

Adaptive Wireless Localization Filter Containing NLOS Error Mitigation Function

  • Cho, Seong Yun
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Range-based wireless localization system must measure accurate range between a mobile node (MN) and reference nodes. However, non-line-of-sight (NLOS) error caused by the spatial structures disturbs the localization system obtaining the accurate range measurements. Localization methods using the range measurements including NLOS error yield large localization error. But filter-based localization methods can provide comparatively accurate location solution. Motivated by the accuracy of the filter-based localization method, a filter residual-based NLOS error estimation method is presented in this paper. Range measurement-based residual contains NLOS error. By considering this factor with NLOS error properties, NLOS error is mitigated. Also a process noise covariance matrix tuning method is presented to reduce the time-delay estimation error caused by the single dynamic model-based filter when the speed or moving direction of a MN changes, that is the used dynamic model is not fit the current dynamic of a MN. The presented methods are evaluated by simulation allowing direct comparison between different localization methods. The simulation results show that the presented filter is more accurate than the iterative least squares- and extended Kalman filter-based localization methods.

Thermoelastic dynamic analysis of wavy carbon nanotube reinforced cylinders under thermal loads

  • Moradi-Dastjerdi, Rasool;Payganeh, Gholamhassan
    • Steel and Composite Structures
    • /
    • v.25 no.3
    • /
    • pp.315-326
    • /
    • 2017
  • In this work, thermoelastic dynamic behavior of functionally graded carbon nanotube reinforced composite (FG-CNTRC) cylinders subjected to mechanical pressure loads, uniform temperature environment or thermal gradient loads is investigated by a mesh-free method. The material properties and thermal stress wave propagation of the nanocomposite cylinders are derived after solving of the transient thermal equation and obtaining of the time history of temperature field of the cylinders. The nanocomposite cylinders are made of a polymer matrix and wavy single-walled carbon nanotubes (SWCNTs). The volume fraction of carbon nanotubes (CNTs) are assumed variable along the radial direction of the axisymmetric cylinder. Also, material properties of the polymer and CNT are assumed temperature-dependent and mechanical properties of the nanocomposite are estimated by a micro mechanical model in volume fraction form. In the mesh-free analysis, moving least squares shape functions are used to approximate temperature and displacement fields in the weak form of motion equation and transient thermal equation, respectively. Also, transformation method is used to impose their essential boundary conditions. Effects of waviness, volume fraction and distribution pattern of CNT, temperature of environment and direction of thermal gradient loads are investigated on the thermoelastic dynamic behavior of FG-CNTRC cylinders.

Gauss-Newton Based Emitter Location Method Using Successive TDOA and FDOA Measurements (연속 측정된 TDOA와 FDOA를 이용한 Gauss-Newton 기법 기반의 신호원 위치추정 방법)

  • Kim, Yong-Hee;Kim, Dong-Gyu;Han, Jin-Woo;Song, Kyu-Ha;Kim, Hyoung-Nam
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.7
    • /
    • pp.76-84
    • /
    • 2013
  • In the passive emitter localization using instantaneous TDOA (time difference of arrival) and FDOA (frequency difference of arrival) measurements, the estimation accuracy can be improved by collecting additional measurements. To achieve this goal, it is required to increase the number of the sensors. However, in electronic warfare environment, a large number of sensors cause the loss of military strength due to high probability of intercept. Also, the additional processes should be considered such as the data link and the clock synchronization between the sensors. Hence, in this paper, the passive localization of a stationary emitter is presented by using the successive TDOA and FDOA measurements from two moving sensors. In this case, since an independent pair of sensors is added in the data set at every instant of measurement, each pair of sensors does not share the common reference sensor. Therefore, the QCLS (quadratic correction least squares) methods cannot be applied, in which all pairs of sensor should include the common reference sensor. For this reason, a Gauss-Newton algorithm is adopted to solve the non-linear least square problem. In addition, to show the performance of the proposed method, we compare the RMSE (root mean square error) of the estimates with CRLB (Cramer-Rao lower bound) and derived the CEP (circular error probable) planes to analyze the expected estimation performance on the 2-dimensional space.

Node Activation Technique for Finite Element Model : Ⅱ. Computation (유한요소 모델의 절점 활성화 기법 : Ⅱ. 계산)

  • Kim, Do Nyeon;Kim, Seung Jo;Ji, Yeong Beom;Jo, Jin Yeon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.4
    • /
    • pp.35-43
    • /
    • 2003
  • In this paper, an efficient computational algorithm for the implementation of the newly proposed node activation technique is presented, and its computational aspects are thoroughly investigated. To verify the validity, convergence, and efficiency of the node activation technique, various numerical examples are worked out including the problems of Poisson equation, 2D elasticity problems, and 3D elasticity problems. From the numerical tests, it is verified that one can arbitrarily activate and handle the nodal points of interest in finite element model with very little loss of the numerical accuracy.

DEVELOPMENT OF PORTABLE NEAR INFRARED SYSTEM FOR HUMAN SKIN MOISTURE

  • Woo, Young-Ah;Ahn, Jhii-Weon;Kim, Hyo-Jin
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.3115-3115
    • /
    • 2001
  • In this study, portable near infrared (NIR) system was newly integrated with a photodiode array detector, which has no moving parts and this system has been successfully applied for evaluation of human skin moisture. The good correlation between NIR absorbance and absolute water content of separated hairless mouse skin was, in vitro, showed depending on the water content (7.42-84.94%) using this portable NIR system. Partial least squares (PLS) regression was used for the calibration with the 1100-1650 nm wavelength range. For the practical use for the evaluation of human skin based on moisture, PLS model for human skin moisture was, in vivo, developed using the portable NIR system based on the relative water content values of stratum corneum from the conventional capacitance method. The PLS model showed a good correlation. This study indicated that the portable NIR system could be a powerful tool for human skin moisture, which may be much more stable to environmental conditions such as temperature and humidity, compared to conventional methods. Furthermore, in order to confirm the performance of newly integrated portable NIR system, scanning type conventional NIR spectrometer was used in the same experiments and the results were compared.

  • PDF

A Study on the Postprocessing of Channel Estimates in LTE System (LTE 시스템 채널 추정치의 후처리 기법 연구)

  • Yoo, Kyung-Yul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.205-213
    • /
    • 2011
  • The Long Term Evolution (LTE) system is designed to provide a high quality data service for fast moving mobile users. It is based on the Orthogonal Frequency Division Multiplexing (OFDM) and relies its channel estimation on the training samples which are systematically built within the transmitting data. Either a preamble or a lattice type is used for the distribution of training samples and the latter suits better for the multipath fading channel environment whose channel frequency response (CFR) fluctuates rapidly with time. In the lattice-type structure, the estimation of the CFR makes use of the least squares estimate (LSE) for each pilot samples, followed by an interpolation both in time-and in frequency-domain to fill up the channel estimates for subcarriers corresponding to data samples. All interpolation schemes should rely on the pilot estimates only, and thus, their performances are bounded by the quality of pilot estimates. However, the additive noise give rise to high fluctuation on the pilot estimates, especially in a communication environment with low signal-to-noise ratio. These high fluctuations could be monitored in the alternating high values of the first forward differences (FFD) between pilot estimates. In this paper, we analyzed statistically those FFD values and propose a postprocessing algorithm to suppress high fluctuations in the noisy pilot estimates. The proposed method is based on a localized adaptive moving-average filtering. The performance of the proposed technique is verified on a multipath environment suggested on a 3GPP LTE specification. It is shown that the mean-squared error (MSE) between the actual CFR and pilot estimates could be reduced up to 68% from the noisy pilot estimates.