• Title/Summary/Keyword: moving elements

Search Result 348, Processing Time 0.028 seconds

A Study on the Elements of Moving Poster Design (무빙 포스터 디자인을 구성하는 요소 연구)

  • Chun, Christine Hyeyeon
    • Journal of Korea Multimedia Society
    • /
    • v.23 no.2
    • /
    • pp.361-367
    • /
    • 2020
  • This study analyzed the factors consisting moving poster design. In order to analyze the elements of moving poster, the researcher reorganized the elements of moving posters by referring to the previous studies on printed posters, motion graphics and works of moving posters. In this study, moving poster components were classified into 'communication', 'visual and form', and 'sound'. In 'communication' section, moving posters had narrative elements, including scenes, because of the time and movement added by the poster's original function. The 'visual and form' section was classified into graphics, layouts, movement, and time. Graphics refered to various graphic objects constituting the screen such as photo, illustration, typography, color, diagram. Layout means screen layout, size, and orientation of the screen. Movement section was divided into 'subject of movement' and 'attributes of movement'. Time was classified physical time such as playing time and subjective time felt by the audience. Also, the researcher categorized 'sound' as an additional section, since most moving posters did not include sound.

(4+n)-noded Moving Least Square(MLS)-based finite elements for mesh gradation

  • Lim, Jae Hyuk;Im, Seyoung
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.91-106
    • /
    • 2007
  • A new class of finite elements is described for dealing with mesh gradation. The approach employs the moving least square (MLS) scheme to devise a class of elements with an arbitrary number of nodal points on the parental domain. This approach generally leads to elements with rational shape functions, which significantly extends the function space of the conventional finite element method. With a special choice of the nodal points and the base functions, the method results in useful elements with polynomial shape functions for which the $C^1$ continuity breaks down across the boundaries between the subdomains comprising one element. Among those, (4 + n)-noded MLS based finite elements possess the generality to be connected with an arbitrary number of linear elements at a side of a given element. It enables us to connect one finite element with a few finite elements without complex remeshing. The effectiveness of the new elements is demonstrated via appropriate numerical examples.

Dynamic behavior of a scroll compressor with radial compliance device (반경방향 순응기구를 갖는 스크롤 압축기의 동적 거동)

  • 김현진;김재호;이진갑
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.1
    • /
    • pp.33-43
    • /
    • 1998
  • Dynamic behavior of a scroll compressor has been investigated analytically. The equations of motion of moving elements of the scroll compressor such as the orbiting scroll, anti-rotation device, slider bush, and the crank shaft with eccentric crank pin have been set up. As the solutions of these equations, reaction forces between the moving elements, and also between the moving elements and the compressor frame have been calculated. The reaction forces from the moving elements to the frame are the unbalanced forces, which produce accelerations of the compressor body. These accelerations can be used as a measure of the compressor vibration. The major contributions to the unbalanced forces come from the orbiting movement of the orbiting scroll.

  • PDF

Graphical Video Representation for Scalability

  • Jinzenji, Kumi;Kasahara, Hisashi
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1996.06b
    • /
    • pp.29-34
    • /
    • 1996
  • This paper proposes a new concept in video called Graphical Video. Graphical Video is a content-based and scalable video representation. A video consists of several elements such as moving images, still images, graphics, characters and charts. All of these elements can be represented graphically except moving images. It is desirable to transform these moving images graphical elements so that they can be treated in the same way as other graphical elements. To achieve this, we propose a new graphical representation of moving images using spatio-temporal clusters, which consist of texture and contours. The texture is described by three-dimensional fractal coefficients, while the contours are described by polygons. We propose a method that gives domain pool location and size as a means to describe cluster texture within or near a region of clusters. Results of an experiment on texture quality confirm that the method provides sufficiently high SNR as compared to that in the original three-dimensional fractal approximation.

  • PDF

Use of finite and infinite elements in static analysis of pavement

  • Patil, V.A.;Sawant, V.A.;Deb, Kousik
    • Interaction and multiscale mechanics
    • /
    • v.3 no.1
    • /
    • pp.95-110
    • /
    • 2010
  • In recent years, study of the static response of pavements to moving vehicle and aircraft loads has received significant attention because of its relevance to the design of pavements and airport runways. The static response of beams resting on an elastic foundation and subjected to moving loads was studied by several researchers in the past. However, most of these studies were limited to steady-state analytical solutions for infinitely long beams resting on Winkler-type elastic foundations. Although the modelling of subgrade as a continuum is more accurate, such an approach can hardly be incorporated in analysis due to its complexity. In contrast, the two-parameter foundation model provides a better way for simulating the underlying soil medium and is conceptually more appealing than the one-parameter (Winkler) foundation model. The finite element method is one of the most suitable mathematical tools for analysing rigid pavements under moving loads. This paper presents an improved solution algorithm based on the finite element method for the static analysis of rigid pavements under moving vehicular or aircraft loads. The concrete pavement is discretized by finite and infinite beam elements, with the latter for modelling the infinity boundary conditions. The underlying soil medium is modelled by the Pasternak model allowing the shear interaction to exist between the spring elements. This can be accomplished by connecting the spring elements to a layer of incompressible vertical elements that can deform in transverse shear only. The deformations and forces maintaining equilibrium in the shear layer are considered by assuming the shear layer to be isotropic. A parametric study is conducted to investigate the effect of the position of moving loads on the response of pavement.

Seismic Analysis of Statically Determinate Beams Using Moving Support Finite Elements (동지점 유한요소를 이용한 정정보의 지진해석)

  • Kim, Yong-Woo;Lee, Seoung Yeal;Jhung, Myung Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.194-199
    • /
    • 2013
  • Using moving support finite elements, seismic analysis of statically-determinate beams subjected to support motions is performed to show its accuracy and its ease of use. Examples of cantilever and simply-supported beam subjected to support motions are illustrated and the numerical results are compared with the analytical solutions. The examples show the elements facilitate modeling beams with the conventional 2-noded, Hermitian, Euler-Bernoulli beam element. The comparisons of the results with analytical solutions show good agreements with high accuracy.

  • PDF

BLDC Motor Cogging Torque Calculation with the Moving Material Method in the Finite Element Method

  • Won, Sung-Hong;Choi, Jae-Hoon;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.3
    • /
    • pp.74-78
    • /
    • 2008
  • Conventionally, when we need to know about the dynamic characteristics of motors, the moving band method has been the first considerable technique. In this paper, we have investigated the moving material method that moves the property of the material in moving area elements of BLDC motors, instead of moving mesh elements of the rotor. From this method, we can reduce the demanded HDD memory for FEM analysis and the calculation time with same results.

Dynamic Response Analysis of Stiffened Plates Subjected Plates Subjected to Moving Loads (이동하중을 받는 보강판의 동응답해석)

  • 정정훈;정태영
    • Journal of KSNVE
    • /
    • v.3 no.1
    • /
    • pp.57-63
    • /
    • 1993
  • The dynamic response of stiffened rectangular plate subjected to a concentrated force or mass moving at constant speed is analyzed by using finite- element method. Stiffened plates are modelled as an assembly of isotropic thin plate elements and equivalent Euler beam ones, in which the beam elements represent the stiffener effects concentrated at the attached lines of stiffeners to the plates. The Newmark's time integration method is used to obtain the dynamic response of stiffened plates. Numerical examples are given to verify the validity of the presented method and also to investigate the effects of speed and moving mass on the dynamic characteristics of stiffened plates.

  • PDF

A Study on the Structural Performance of the Building Exterior Panel Using the Moving Clips (이동 클립을 이용한 건축물 외장재의 구조적 성능에 관한 연구)

  • Kwak, Eui-Shin;Ki, Chang-Gun;Lee, Sang-Ho;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.29-36
    • /
    • 2017
  • A recent global trend in the increase of earthquake-related disasters has become so frequent as to cause various damages to a wide range of mid- to high-rise buildings. Particularly, more attention is being paid to the effect of horizontal load in high-rise buildings not only on the key structural elements of the structures, but also on the possibility of the secondary damages to them due to the failure of exterior panels, which are non-structural elements, but such damages are difficult to cope with as they may be caused by unexpected changes. The present study examined exterior panels using moving clips to prevent such secondary damages on the non-structural elements and analyzed the structural performance of these exterior panels through the finite element analysis and the shaking table test. The analysis results showed that the exterior panels using moving clips satisfied the structural performance against the allowable story drift of KBC2009 and the safety of the exterior panels was verified by the shake table test.

A Study on the Development of Shape Functions of Polyhedral Finite Elements (다면체 유한요소의 형상함수 개발에 관한 연구)

  • Kim, Hyun-Gyu
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.3
    • /
    • pp.183-189
    • /
    • 2014
  • In this paper, a polyhedral element is presented to solve three-dimensional problems by developing shape functions based on Wachspress coordinates and moving least square approximation. A subdivision of polyhedrons into tetrahedral domains is performed for the construction of shape functions of polyhedral elements, and numerical integration of the weak form is carried out consistently over the tetrahedral domains. The weight functions for moving least square approximation are defined by solving Laplace equation with boundary values based on Wachspress coordinates on polyhedral element faces. Polyhedral elements presented in this paper have similar properties to conventional finite element regarding the continuity, the completeness, the node-element connectivity and the inter-element compatibility. Numerical examples show the effectiveness of the present method for solving three-dimensional problems using polyhedral elements.