In this paper, we propose a method for predicting a user's location based on their past movement patterns. There is no restriction on the length of past movement patterns when using this method to predict the current location. For this purpose, a modified search tree has been devised. The search tree is constructed in an effective manner while it additionally learns the movement patterns of a user one by one. In fact, the time complexity of the learning process for a movement pattern is linear. In this process, the search tree expands to take into consideration more details about the movement patterns when a pattern that conflicts with an existing trained pattern is found. In this manner, the search tree is trained to make an exact matching, as needed, for location prediction. In the experiments, the results showed that this method is highly accurate in comparison with more complex and sophisticated methods. Also, the accuracy deviation of users of this method is significantly lower than for any other methods. This means that this method is highly stable for the variations of behavioral patterns as compared to any other method. Finally, 1.47 locations were considered on average for making a prediction with this method. This shows that the prediction process is very efficient.
동영상에서 객체의 동작 정보는 장면의 내용을 분류하고 구분하는 중요한 정보로 이용될 수 있다. 본 논문에서는 동영상에서 객체의 동작을 효과적으로 찾기 위한 모양기반 동작 검색 방법을 제안한다. 객체의 동작 정보는 동영상 프레임에서 객체 영역을 추출하여 연속된 2차원 모양 정보로 표현되고, 각각의 2차원 모양 정보는 모양 기술자를 이용하여 1차원 모양 특정값으로 변환된다. 순서에 따라 나열된 모양 기술자 시퀀스를 이용하여 개별 동작의 분할 과정 없이 문서에서 단어를 검색하듯이 동영상에서 객체의 동작을 검색할 수 있다. MPEG-7 모양 변화 기술자와의 성능 비교 실험을 통하여 제안된 방법이 객체의 동작 정보를 보다 효과적으로 표현할 수 있으며, 동작 검색 및 분석 응용에 적용할 수 있음을 보였다.
Object Tracking is a technique for tracking moving objects over time in a video image. Using object tracking technique, many research are conducted such a detecting dangerous situation and recognizing the movement of nearby objects in a smart car. However, it still remains a challenging task such as occlusion, deformation, background clutter, illumination variation, etc. In this paper, we propose a novel deep visual object tracking method that can be operated in robust to many challenging task. For the robust visual object tracking, we proposed a Convolutional Neural Network(CNN) which shares weight of the convolutional layers. Input of the CNN is a three; first frame object image, object image in a previous frame, and current search frame containing the object movement. Also we propose a method to consider the motion of the object when determining the current search area to search for the location of the object. Extensive experimental results on a authorized resource database showed that the proposed method outperformed than the conventional methods.
In this paper, we present a path search scheme for the safe movement of the swarm of unmanned systems in unknown dangerous areas. Some of the swarm searches for the primary and secondary paths before the majority of swarm move through dangerous areas. In terms of rapid movement from the dangerous area and preparation for an accident, the primary path is searched first in the destination's direction. The secondary path is searched by considering the distance between the paths to guarantee a safe distance. The computer simulations show that the proposed scheme is suitable for the swarm of unmanned systems.
This paper introduces robust tracking algorithm for fast and erratic moving object. CAMSHIFT algorithm has less computation and efficient performance for object tracking. However, the method fails to track a object if it moves out of search window by fast velocity and/or large movement. The size of the search window in CAMSHIFT algorithm should be selected manually also. To solve these problems, we propose an efficient prediction technique for fast movement of object using Kalman Filter with automatic initial setting and variable configuration technique for search window. The proposed method is compared to the traditional CAMSHIFT algorithm for searching and tracking performance of objects on test image frames.
Objective: This study aims to present literature providing researchers with insights on specific fields of research and highlighting the major issues in the research topics. A systematic review is suggested using content analysis on literatures regarding "visual search", "eye movement", and "eye track". Background: Literature review can be classified as "narrative" or "systematic" depending on its approach in structuring the content of the research. Narrative review is a traditional approach that describes the current state of a study field and discusses relevant topics. However, since literatures on specific area cover a broad range, reviewers inherently give subjective weight on specific issues. On the contrary, systematic review applies explicit structured methodology to observe the study trends quantitatively. Method: We collected meta-data of journal papers using three search keywords: visual search, eye movement, and eye track. The collected information contains an unstructured data set including many natural languages which compose titles and abstracts, while the keyword of the journal paper is the only structured one. Based on the collected terms, seven categories were evaluated by inductive categorization and quantitative analysis from the chronological trend of the research area. Results: Unstructured information contains heavier content on "stimuli" and "condition" categories as compared with structured information. Studies on visual search cover a wide range of cognitive area whereas studies on eye movement and eye track are closely related to the physiological aspect. In addition, experimental studies show an increasing trend as opposed to the theoretical studies. Conclusion: By systematic review, we could quantitatively identify the characteristic of the research keyword which presented specific research topics. We also found out that the structured information was more suitable to observe the aim of the research. Chronological analysis on the structured keyword data showed that studies on "physical eye movement" and "cognitive process" were jointly studied in increasing fashion. Application: While conventional narrative literature reviews were largely dependent on authors' instinct, quantitative approach enabled more objective and macroscopic views. Moreover, the characteristics of information type were specified by comparing unstructured and structured information. Systematic literature review also could be used to support the authors' instinct in narrative literature reviews.
본 논문은 로봇이 다양한 지형 탐색이 가능한 자율 주행 알고리즘을 제안하고, 지형 탐색 중 로봇의 이동 경로를 모니터링 할 수 있는 애플리케이션을 구현한다. 구현한 애플리케이션은 이동 로봇의 위치, 방향, 속력, 동작을 나타내는 상태부와 지형 탐색을 통해 얻은 지형 정보를 나타내는 지도부, 이동 로봇의 동작을 제어하는 제어부로 구성된다. 로봇의 움직임 제어는 탐색/복귀의 시작과 정지만 애플리케이션으로 명령하고, 탐색을 위한 모든 주행은 자율로 하도록 하였다. 지형 탐색의 기본적인 알고리즘은 적외선 센서를 이용해 좌측, 전방, 우측, 후방 순으로 장애물을 확인하여 장애물이 없는 곳이 이동하고 이동한 경로가 막다른 길이면 이전 위치로 돌아와 다른 방향으로 이동하여 탐색을 계속하는 과정을 반복하여 지형을 탐색한다.
There are many display panels in the flight cockpit and pilots get various flight information from those displays. The ergonomic layout of the displays must be determined based upon frequency of use and sequence of use. This study investigated the visual search patterns of the six display groups(one head-up-display: HUD, two multi function displays: MFDs, one engine group: EG, one flight display group: FD and others) in a fighting aircraft. Four expert pilots conducted Imaginary flight in the physical mock-up and the eye movements were collected using eye tracking system. Data of dwell time, frequency of use, and eye movement path were collected. Pilots spent most of time on HUD(55.2%), and others (21.6%), FD(14.2%), right MFD(4.7%), EG(3.2%), and left MFD(1.1%) in descending order. Similarly HUD(42.8%) and others(30.0%) were the most frequently visited displays. These data can be used in the layout of cockpit displays and the determination of optimal visual search pattern.
Objective: The aim of this study is to understand and identify the critical issues in vision research area using content analysis and network analysis. Background: Vision, the most influential factor in information processing, has been studied in a wide range of area. As studies on vision are dispersed across a broad area of research and the number of published researches is ever increasing, a bibliometric analysis towards literature would assist researchers in understanding and identifying critical issues in their research. Method: In this study, content and network analysis were applied on the meta-data of literatures collected using three search keywords: 'visual search', 'eye movement', and 'eye tracking'. Results: Content analysis focuses on extracting meaningful information from the text, deducting seven categories of research area; 'stimuli and task', 'condition', 'measures', 'participants', 'eye movement behavior', 'biological system', and 'cognitive process'. Network analysis extracts relational aspect of research areas, presenting characteristics of sub-groups identified by community detection algorithm. Conclusion: Using these methods, studies on vision were quantitatively analyzed and the results helped understand the overall relation between concepts and keywords. Application: The results of this study suggests that the use of content and network analysis helps identifying not only trends of specific research areas but also the relational aspects of each research issue while minimizing researchers' bias. Moreover, the investigated structural relationship would help identify the interrelated subjects from a macroscopic view.
건물 내에서 특정 사용자의 현 위치를 예측하는 문제는 방문자의 안내 등 다양하게 응용될 수 있다. 이 문제를 풀기 위해 기존 방법들은 사용자가 과거에 이동한 패턴을 한정된 길이만큼만 고려하여 예측한다. 이는 복잡한 이동 패턴을 모델링 할 수 없고, 단순한 이동 패턴은 필요 이상으로 상세히 모델링함으로써 시스템의 효율을 떨어뜨림은 물론이고, 예측 오류를 야기한다. 본 논문에서는 기존의 방법들과는 달리 최근 이동 경로의 길이에 제한을 두지 않고 이동 패턴을 구분하는데 필요한 만큼만 고려하여 예측 결과를 도출하고자 한다. 이를 위해 탐색 트리를 사용하는데, 이 탐색 트리는 위치 예측에 필요한 만큼만 장소를 비교하도록 구성된다. 이 탐색 트리는 효율적이고 정확한 예측을 가능하게 해준다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.