• Title/Summary/Keyword: mouse-click

Search Result 57, Processing Time 0.028 seconds

Gyro-Mouse for the Disabled: 'Click' and 'Position' Control of the Mouse Cursor

  • Eom, Gwang-Moon;Kim, Kyeong-Seop;Kim, Chul-Seung;Lee, James;Chung, Soon-Cheol;Lee, Bong-Soo;Higa, Hiroki;Furuse, Norio;Futami, Ryoko;Watanabe, Takashi
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.2
    • /
    • pp.147-154
    • /
    • 2007
  • This paper describes a 'gyro-mouse', which provides a new human-computer interface (HCI) for persons who are disabled in their upper extremities, for handling the mouse-click and mouse-move function. We adopted the artificial neural network to recognize a quick-nodding pattern of the disabled person as the gyro-mouse click. The performance of our gyro-mouse was evaluated by three indices that include 'click recognition rate', 'error in cursor position control', and 'click rate per minute' on a target box appearing at random positions. Although it turned out that the average error in cursor positioning control was 1.4-1.5 times larger than that of optical mouse control, and the average click rate per minute was 40% of the optical mouse, the overall click recognition rate was 93%. Moreover, the click rate per minute increased from 35.2% to 44% with repetitive trials. Hence, our suggested gyro-mouse system can be used to provide a new user interface tool especially for those persons who do not have full use of their upper extremities.

Effect of Biomechanical Intervention based on Custom Seating System on Activities of Mouse Click for Children with Cerebral Palsy (맞춤형 착석장치를 통한 생체역학적 중재가 뇌성마비 아동의 마우스 클릭 동작에 미치는 영향)

  • Jeong, Dong-Hoon
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.57-65
    • /
    • 2012
  • Purpose: This study was to investigate the effect of biomechanical intervention, based on the custom seating system on the activities of a mouse click for children with cerebral palsy. Methods: Thirteen children with cerebral palsy participated in this study. We compared reaction time and frequency for proper mouse click in the subject's typical position, in addition to an intervention position. The intervention position conformed to the principle and practice of research on promoting the upper-extremity movement and postural control. The intervention position was achieved through an external postural support, which was based on the custom seating system. Results: Reaction time and frequency for proper mouse click were moderately improved in the intervention position, compared with that of the typical position. There was a statistically significant difference between the typical position and that of the intervention position (p<0.05). Conclusion: Results provide evidence of the positive effects of functional seating on the activities of a mouse click for children with cerebral palsy.

A Study of Muscle Activation in Upper Extremity According Mouse Shape (마우스 형태에 따른 상지의 근활성도의 변화)

  • Kim, Ju Heon;Yu, Yeon Tae;Kim, Jin Hun;Oh, Tae Young
    • Journal of Korean Physical Therapy Science
    • /
    • v.19 no.4
    • /
    • pp.53-59
    • /
    • 2012
  • Background : The purpose of the study was: to investigate muscle activation of upper arm according mouse shape. Methods : Twenty person(mean age : 23. 7) who have healthy condition was participated this study, we collected data of muscle activation using by EMG from upper trapezius(Tr), deltoid middle fiber(De), extensor digitorum(Ed), first dorsal interosseous(Di) during participants was performed click and drag according various mouse. Mouse shape was divided 4 level as follow shape 1 was very small, 2 was small, 3 was moderate, 4 was large. Data was analyzed ANOVA, independent t-test using by SPSS ver18.0. Results : There was significantly difference of muscle activation among each muscle according mouse shape in drag and click. In shape 1, 4, there was significantly difference of muscle activation of Tr, De, Ed between drag and click except Di. In shape 2, 4, there was significantly difference of muscle activation of all muscle between drag and click. Conclusion : We knew that extensor digitroum showed more higher muscle activation than other muscle in drag, first dorsal interoseous showed more higher muscle activation that other muscle in click. We suggest that mouse shape was very important factor in order to prevent skeletal muscular disorder for computer user, and mouse shape can reduce muscle fatigue during computer work.

  • PDF

Computer Interface for the Disabled Using Gyro-sensors and Artificial Neural Network (자이로 센서와 인공신경망을 이용한 장애인용 컴퓨터)

  • 안용식;엄광문;김철승;허지운;나유진
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.5
    • /
    • pp.411-419
    • /
    • 2003
  • This paper aims at developing 'gyro-mouse' which provides decent and comfortable human-computer interface that supports the usage of such software as an internet-browser in PC for the people paralyzed in upper limbs. This interface operates on information collected from head movement to get the cursor control. The interface is composed of two modules. One is hardware module in which the head horizontal and vertical angular velocities are detected and transmitted into PC. The other is a PC software that translates the received data into movement and click signals of the mouse. The ANN (artificial neural network) learns the quick nodding pattern of each user as click input so that it can provide user-friendly interface. The performance of the system was evaluated by three indices that are click recognition rate. error in cursor position control. and click rate of the moving target box. The performance result of the gyro-mouse was compared with that of the optical-mouse to assess the efficiency of the gyro-mouse. The average click recognition rate was 93%, average error in cursor position control was 1.4∼5 times of optical mouse. and the click rate with 50 pixels target box was 40%(30 clicks/min) to that of optical mouse. The click rate increased monotonously with the number of trial from 35% to 44%. The suggested system is expected to provide a new possibility to communicate with the society.

Development of a computer mouse using gyro-sensors and LEDs (자이로 센서와 LED를 이용한 마우스 개발)

  • Park, Min-Je;Kang, Shin-Wook;Kim, Soo-Chan
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.701-706
    • /
    • 2009
  • We proposed the device to control a computer with only a head and eye blinks so that disabilities by car accidents can use a computer. Because they have paralysis of their upper extremities such as C4~C5 paraplegics and cerebral palsy, they cannot efficiently access a general keyboard/mouse not using hands and foots. The cursor position was estimated from a gyro-sensor which can measure head movements, and the mouse event such as click/double click from opto-sensors which can detect eye blinks. The sensor was put on the proper goggle in order not to disturb the visual field. The performance of the proposed device was compared to a general optical mouse, and was used both relative and absolute coordinate in cursor positioning control. The recognition rate of click and double-click was 86% of the optical mouse, the speed of cursor movement by the proposed device was not much different from the mouse. The overall accuracy was 80%. Especially, the relative coordinate is more convenience and accuracy than the absolute coordinate, and can reduce the frequency of reset to prevent the accumulative error.

  • PDF

Development of a computer mouse by tracking head movements and eyeblink (머리 움직임과 눈 깜박임을 이용한 컴퓨터 마우스 개발)

  • Park, Min-Je;Kang, Shin-Wook;Kim, Soo-Chan
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1107-1108
    • /
    • 2008
  • The purpose of this study is to develope a computer mouse using the head movements and eye blink in order to help the disability persons who can't move the hands or foot because of car accident or cerebral apoplexy. The mouse is composed of two gyro-sensors and photo sensor. The gryo-sensors detect the head horizontal and vertical angular velocities, respectively. The photo sensor detect the eye blink to perform click, double click, and to reset the head position. In the results, we could control the mouse points in real time using the proposed system.

  • PDF

Development and Clinical Evaluation of Wireless Gyro-mouse for the Upper Extremity Disabled to Use Computer (상지장애인의 컴퓨터 사용을 위한 무선 자이로마우스의 개발 및 임상평가)

  • Han Ha-Na;Song Eun-Beom;Kim Chul-Seung;Heo Ji-Un;Eom Gwang-Moon
    • Science of Emotion and Sensibility
    • /
    • v.9 no.2
    • /
    • pp.93-100
    • /
    • 2006
  • This paper aims at the development and clinical evaluation of the wireless gyro-mouse system. The wireless gyro-mouse system is a computer interface with gyro-sensor and wireless communication, for the patients with upper-extremity disabled from the traffic accident or stroke to use the computer software i.e. internet browser. In the development, we focused on, firstly, to make the system wireless for the patients to manipulate the mouse easily even on the bed or wheelchair, secondly, to insert the gyro-sensor into a headband for easy don-and-doff and aesthetic appearance, thirdly, to devise a click switch in case of $C5{\sim}C6$ patients and a head nodding detection in case of C4 patients for sending click message to computer operating system. We performed evaluation experiment for patients with upper-extremities disabled from spinal cord injury. The results show that the displacement error of the cursor position against the target position during linear (vertical/horizontal) movement manipulation decreased with trial number. The click rate per minute also increased with trial number. This indicates the developed wireless gyro-mouse system would be more useful to the patients with repetitive use.

  • PDF

The Design and Implementation of Web Page Access Manager (Web Page Access Manager의 설계 및 구현)

  • 황인문;정강용;김원중
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.555-559
    • /
    • 2002
  • Internet users can input URL in Address window of browser or click address of site that is registered to Bookmark and sail the world of internet. But, need input of ID and password and mouse click action of 4-5 times to reach on target page that users want. This environment is very annoying work to users who approach specification page repeatedly every day. So, Homepage (first screen) of URL that want is not, Web Page Access Manager's development that can approach to target page that want by mouse click of short once. That may make web users can approach fast on target page, and minimise effort by web sailing.

  • PDF

Head Mouse System Based on A Gyro and Opto Sensors (각속도 및 광센서를 이용한 헤드 마우스)

  • Park, Min-Je;Yoo, Jae-Ha;Kim, Soo-Chan
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.46 no.4
    • /
    • pp.70-76
    • /
    • 2009
  • We proposed the device to control a computer mouse with only head movements and eye blinks so that disabilities by car or other accidents can use a computer. The mouse position were estimated from a gyro-sensor which can measure head movements, and the mouse events such as click/double click were from opto sensors which can detect the eyes flicker, respectively. The sensor was mounted on the goggle in order not to disturb the visual field. There was no difference in movement speed between ours and a general mouse, but it required 3$\sim$4 more times in the result of the experiment to evaluate spatial movements and events detection of the proposed mouse because of the low accuracy. We could eliminate cumbersome work to periodically remove the accumulated error and intuitively control the mouse using non-linear relative point method with dead zones. Optical sensors are used in the event detection circuitry designed to remove the influence of the ambient light changes, therefore it was not affected in the change of external light source.