• Title/Summary/Keyword: mouse embryo

Search Result 472, Processing Time 0.027 seconds

Sperm Component Inducing 2nd Polar Body Extrusion in Mouse Oocytes (생쥐 난자의 제2극체 방출을 유발하는 정자 성분)

  • 김은희;오현주;손채은;이은주;김동신;여영근;박영식
    • Journal of Embryo Transfer
    • /
    • v.15 no.3
    • /
    • pp.237-245
    • /
    • 2000
  • This study was carried out to elucidate whether sperm contain a factor inducing second polar body extrusion and to search for an effective collection method of the sperm factor Thus, sperm extract, dialyzed sperm-extract or liquid chromatographic fractions of sperm extract was microinjected into ovulated oocytes. And the microinjected oocytes were incubated for 24 hours to investigate about the extrusion of second polar body. The results obtained were as follows; 1. Sperm extract significantly increased the second polar body extrusion. 2. Sperm extract showed five major fractions at retention volumes (RVs) 1.25, 1.37, 1.84, 2.10 and 2.67ml after separation with Superose 12 column. These sperm extract fractions did not significantly increase the second polar body extrusion. 3. Dialyzed sperm-extract significantly increased the second polar body extrusion 4. Dialyzed sperm-extract showed three maior fractions at RVs 1.88, 2.14 and 2.77ml after separation with Superose 12 column. Of these fractions, the fraction RV2.14 significantly increased the second polar body extrusion. In conclusion, sperm extract contained a factor inducing the second polar body extrusion and the factor was contained largely in fraction RV2.14 after dialysis and liquid chromatographic fractionation of sperm extract.

  • PDF

G Protein Mediated Hatching Regulation in the Mouse Embryo

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.16 no.1
    • /
    • pp.69-75
    • /
    • 2012
  • Hatching occurred in the time dependent manners and strictly controlled. Although, the hatching processes are under the control of muti-embryotrophic factors and the expressed G proteins of cell generate integrated activation, the knowledge which GPCRs are expressed during hatching stage embryos are very limited. In the present study, which G proteins are involved was examined during blastocyst development to the hatching stage. The early-, expanded-, and lobe-stage blastocysts were treated with various $G_{\alpha}$ activators and H series inhibitors, and examined developmental patterns. Pertusis toxin (PTX) improved the hatching rate of the early-stage blastocyst and lobe-formed embryos. Cholera toxin (CTX) suppressed the hatching of the early-stage blastocyst and expanded embryos. The effects of toxins on hatching and embryo development were changed by the H7 and H8. These results mean that PTX mediated GPCRs activation is signaling generator in the nick or pore formation in the ZP. In addition, PTX mediated GPCR activation induces the locomotion of trophectoderm for the escaping. CTX mediate GPCRs activation is the cause of suppression of hatching processes. Based on these data, it is suggested that various GPCRs are expressed in the periimplantation stage embryos and the integration of the multiple signals decoding of various signals in a spatial and temporal manner regulate the hatching process.

Production and Characterization of Monoclonal Antibodies to Porcine Zona Pellucida (돼지난자 투명대의 단일클론 항체 생산 및 특성화)

  • 이광희;이홍준;이상호
    • Journal of Embryo Transfer
    • /
    • v.11 no.1
    • /
    • pp.71-80
    • /
    • 1996
  • The envelope of the rnannnalian oocyte plays crucial roles in sperm-oocyte interactions by providing sperm receptors, inducing acrosome reaction and preventing polyspermy. Understanding of properties of the zona pellucida (ZP) is essential for the artificial control of fertility in mammals. This study was carried out to produce and characterize monoclonal antibodies(MAbs) to porcine ZP proteins. Approximately 8,000 ZPs were obtained from follicular oocytes and dissolved in 40$\mu$l of double distilled water. Following immunization through foot-pad injections of Balb /c mice with a ZP solution, the popliteal lymph nodes were recovered at 2 weeks after the last injection. Hybridoma cell lines were established by fusing lymph node cells with P3X63 myeloma cells through selection using HAT medium and screening by immunofluorescence(IF) microscopy on the isolated ZP. Secreted MAbs were found to consist k chains and different heavy chains as evidenced by isotyping. Some of the MAbs demonstrated high specificity to the ZP in IF. The Mabs also showed positive cross reactivity with hamster and mouse eggs, while negative with bovine eggs. The results implicate that the MAbs can be used not only for identification of functional regions of the ZP, but also for elucidation of mechanisms involved in fertilization of mammals. The MAbs will provide basic information on biochemical anatomy of the ZP as well as can be candidates for the future contraceptive vaccines.

  • PDF

The influence and role of melatonin on in vitro oocyte maturation and embryonic development in pig and cattle

  • Lin, Tao;Lee, Jae Eun;Kang, Jeong Won;Kim, So Yeon;Jin, Dong Il
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.3
    • /
    • pp.309-317
    • /
    • 2017
  • Melatonin (N-acetyl-5-methoxytryptamine) is an indole synthesized from tryptophan by the pineal gland in animal. The major function of melatonin is to modulate circadian and circannual rhythms in photoperiodic mammals. Importantly, however, melatonin is also a free radical scavenger, anti-oxidant, and anti-apoptotic agent. Recently, the beneficial effects of melatonin on oocyte maturation and embryonic development in vitro have been reported in many species such as pig, cattle, sheep, mouse, and human. In this review, we will discuss recent studies about the role of melatonin in the production of porcine and bovine oocytes and embryos in vitro in order to provide useful information of melatonin in oocyte maturation and embryo culture in vitro.

Adverse Effect of Human Hydrosalpingeal Fluid on the Development of Mouse Embryo (II) (인체의 난관수종액이 생쥐의 배아발달에 미치는 영향: II. 포배기내의 세포 수에 미치는 영향)

  • Koong, Mi-Kyoung;Jun, Jin-Hyun;Song, Sang-Jin;Song, Ji-Hong;Hong, Soo-Jeong;Yoon, Keun-Jae;Song, Il-Pyo;Kim, Jeong-Wook;Kang, Inn-Soo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.2
    • /
    • pp.213-217
    • /
    • 1999
  • In our previous study, we observed that hydrosalpingeal fluid (HSF) adversely effect mouswe embryo development and hatching. The aim of this study was to evaluate the effect of HSF as assessed by the blastocyst development rate (BDR) and by cell counting in vitro. HSF was collected from ninie patients undergoing salpingoneostomy to correct hydrosalpinx. Two-cell embryos were obtained from superovulated ICR mice. T6 medium and $T6{\pm}0.4%$ bovine serum albumin were used as control media. T6 medium containing 10% or 50% HSF and 100% HSF from each patient were used as test media. Nine to 15 embryos were cultured in micro drops prepared from each of these media. To assess the total cell number within each blastocyst, the blastocysts were fixed and stained with Hoechst 33342 to facilitate cell counting. The mean BDR in two control media were 88.89% and 85.40%. The mean BDR in media containing 10%, 50%, 100% HSF were 85.87%, 89.58% and $75.57%^*$, respectively ($^*$: p<0.05). The overall mean cell count $({\pm}SEM)$ in control media were $87.6{\pm}9.65\;and\;90.12{\pm}11.38$. The BDR was affected adversely only by 100% HSF and not in media containing 10% or 50% HSF. Mean cell counts were decreased significantly only in blastocysts cultured 100% HSF ($63.8{\pm}13.66$; p<0.01) but not in blastocysts cultured in 10% or 50% HSF ($91.3{\pm}12.44\;and\;82.9{\pm}18.27$, respectively). Thus, it is concluded that HSF has no embyotoxic effect but has a mildly negatively effect on embryonic growth and development.

  • PDF

In Vivo Development of Mouse IVF/IVC Embryo Treated with Epidermal Growth Factor (EGF) (EGF 처리를 받은 체외생산된 생쥐배의 체내 발달)

  • Kim, E.Y.;Kim, M.K.;Yi, B.K.;Lee, H.S.;Yoon, S.H.;Park, S.P.;Chung, K.S.;Lim, J.H.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.24 no.2
    • /
    • pp.261-265
    • /
    • 1997
  • The objective of this study was to examine the effect of EGF to the in vivo development of mouse IVF/IVC embryo. The 2-cell embryos were cultured in medium (5-6 embryos/25 ${\mu}l$/drop) w/wo EGF (10 ng/ml) and day 4 blastocysts recovered from each treatment group were transferred into the uteri of recipients of pseudopregnant day 3. The results obtained in this experiment were summarized as follows: 1. When the effect of EGF to the in vitro development and cell number of blastocysts produced from the culture of 2-cell embryos in w/wo EGF was determined, those results of EGF treatment group showed not significant difference compared with control. 2. However, when the effect of EGF to the in vivo development of blastocysts recovered from each treatment group was examined, production of the normal fetus against transferred embryos in EGF treatment group (51.2%) was very higher than that in control group (31.1%), although total implantation was not significantly different between treatment group (control: 64.4%, EGF: 69.8%). Therefore, this result suggested that EGF can affect to the in vivo development of IVF/IVC embryos through the improvement of embryo quality, although EGF treated embryos showed not significant development rate compared with control.

  • PDF

Anti-aging effects of Korean Red Ginseng (KRG) in differentiated embryo chondrocyte (DEC) knockout mice

  • Nam, Youn Hee;Jeong, Seo Yule;Kim, Yun Hee;Rodriguez, Isabel;Nuankaew, Wanlapa;Bhawal, Ujjal K.;Hong, Bin Na;Kang, Tong Ho
    • Journal of Ginseng Research
    • /
    • v.45 no.1
    • /
    • pp.183-190
    • /
    • 2021
  • Background: The circadian rhythm is the internal clock that controls sleep-wake cycles, metabolism, cognition, and several processes in the body, and its disruption has been associated with aging. The differentiated embryo chondrocyte (Dec) gene is related to circadian rhythm. To our knowledge, there are no reports of the relationship between dec gene expression and KRG effect. Therefore, we treated Dec gene knockout (KO) aging mice with KRG to study anti-aging related effects and possible mechanisms. Methods: We evaluated KRG and expression of Dec genes in an ototoxicity model. Dec genes expression in livers of aging mice was further analyzed. Then, we assessed the effects of DEC KO on hearing function in mice by ABR. Finally, we performed DNA microarray to identify KRG-related gene expression changes in mouse liver and assessed the results using KEGG analysis. Results: KRG decreased the expression of Dec genes in ototoxicity model, which may contribute to its anti-aging efficacy. Moreover, KRG suppressed Dec genes expression in liver of wild type indicating inhibition of senescence. ABR test indicated that KRG improved auditory function in aging mouse, demonstrating KRG efficacy on aging related diseases. Conclusion: Finally, in KEGG analysis of 238 genes that were activated and 158 that were inhibited by KRG in DEC KO mice, activated genes were involved in proliferation signaling, mineral absorption, and PPAR signaling whereas the inhibited genes were involved in arachidonic acid metabolism and peroxisomes. Our data indicate that inhibition of senescence-related Dec genes may explain the anti-aging efficacy of KRG.

A method using artificial neural networks to morphologically assess mouse blastocyst quality

  • Matos, Felipe Delestro;Rocha, Jose Celso;Nogueira, Marcelo Fabio Gouveia
    • Journal of Animal Science and Technology
    • /
    • v.56 no.4
    • /
    • pp.15.1-15.10
    • /
    • 2014
  • Background: Morphologically classifying embryos is important for numerous laboratory techniques, which range from basic methods to methods for assisted reproduction. However, the standard method currently used for classification is subjective and depends on an embryologist's prior training. Thus, our work was aimed at developing software to classify morphological quality for blastocysts based on digital images. Methods: The developed methodology is suitable for the assistance of the embryologist on the task of analyzing blastocysts. The software uses artificial neural network techniques as a machine learning technique. These networks analyze both visual variables extracted from an image and biological features for an embryo. Results: After the training process the final accuracy of the system using this method was 95%. To aid the end-users in operating this system, we developed a graphical user interface that can be used to produce a quality assessment based on a previously trained artificial neural network. Conclusions: This process has a high potential for applicability because it can be adapted to additional species with greater economic appeal (human beings and cattle). Based on an objective assessment (without personal bias from the embryologist) and with high reproducibility between samples or different clinics and laboratories, this method will facilitate such classification in the future as an alternative practice for assessing embryo morphologies.

Effect of Ethylene Glycol (EG) and 1,2-Propanediol (PROH) on the Survival and the Development of Mouse and Human Embryos after Slow Freezing/Rapid Thawing Protocol (생쥐와 인간배아의 완만동결-급속융해 후 생존률과 배아발생에 미치는 Ethylene Glycol (EG)과 1,2-Propanediol (PROH)의 영향)

  • Kim, Tae-Hyung;Cha, Soo-Kyung;Lee, Dong-Ryul;Han, Jee-Eun;Lee, Woo-Sik;Yoon, Tai-Ki;Cha, Kwang-Yul;Chung, Hyung-Min
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.31 no.1
    • /
    • pp.9-17
    • /
    • 2004
  • Objective: The aim of this study were to compare the effects of EG and PROH on cryopreservation of mouse and human embryos, and to find the optimal protocol for embryo freezing. Methods: Human embryos derived from fertilized eggs showing 3 pronuclei (PN) and mouse embryos were divided into two groups respectively: dehydrated with 1.5 M EG + 0.2 M sucrose or 1.5 M PROH + 0.2 M sucrose using the slow freezing method. Moreover mouse embryos were controlled the exposure time of cryoprotectant during dehydration or rehydration steps. Results: The survival rates of human embryos were 79.2% (84/106) in EG group and 77.9% (88/113) in PROH group. In mouse embryos, the survival and development rates up to blastocyst were 70.6% (245/347), 44.1% (123/279) in EG group and 62.1% (198/319), 45.1% (123/279) in PROH group, respectively. However, in EG group, partially damaged embryos after thawing were decreased compared to PROH group. In combination group, when the exposure time during dehydration and rehydration were reduced, the survival and embryonic developments were increased slightly, but not significant. Conclusion: Cryopreservation of mouse and human embryos at cleavage stage by using EG or PROH exhibited no statistical difference in the survival rate and/or developmental rate to blastocyst. However, the use of EG for cryopreservation of embryos might reduce the exposure time of the cryoprotectant because of a high permeation of EG and result in lessen its toxic effects.

In Vitro/In Vivo Development of Vitrified Mouse Zygotes and Chromosome Analysis of Offspring (초자화 동결된 생쥐 1-세포기배의 체외/체내 발달과 산자의 염색체 분석)

  • 김묘경;김은영;이현숙;윤산현;박세필;정길생;임진호
    • Korean Journal of Animal Reproduction
    • /
    • v.21 no.1
    • /
    • pp.47-52
    • /
    • 1997
  • The objective of this study was to investigate the in vitro / in vivo embryonic development after vitrification of mouse zygotes and the chrom osomal normality of delivered live young after embryo transfer. Mouse IVF zygotes were cryopreserved by vitrification using vitrification solution, EFS40 (40% ethylene glyc이, 30% Ficoll a and 0.3 M sucrose in phosphate buffer saline c containing 10% FBS ) . After mouse zygotes were exposed to EFS40 at 25"C for 30 sec., they were immediately plunged into LN$_2$. Vitrified thawed mouse zygotes were cultured upto bIastocysts in M16 for 4 days. The rates of in vitro development were 71.5% under this condition. Cultured blastocysts were transferred to recipients (3 day of pseudopregnant) on one or both uterus horns (6-8 embryos per a uterus horn). And all recipients were allowed to produce litters. The results obtained in these experiments were summarized as follows: The pregnancy rates and in vivo survival rates, live fetus rates, for vitrified zygotes (80.0, 39.6%) were not significantly difference in those of control zygotes (77.8%, 50.0%). Also, all of live-born young mice were chromosomally normal (n=40). This results suggested that proposed rapid vitrification procedures can be effectively use in 1-cell mouse zygotes cryopreservation.

  • PDF