• Title/Summary/Keyword: mountainous river

Search Result 108, Processing Time 0.024 seconds

Study on the Criterion of River Zones Classification (하천구역구분의 기준에 관한 연구)

  • Song, Ju Il;Yoon, Sei Eui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2B
    • /
    • pp.131-137
    • /
    • 2012
  • River areas are classified as conservation, restoration, and recreation zones depending on engineers' opinions from their experiences at present. For conservation zones, almost all engineers have the same opinions because natural characteristics are considered for classification. However, it is difficult to decide a basis in classifying restoration and recreation zones in mixed areas by urban and rural streams. This study attempted to prove an application of a previous study (Song & Yoon, 2008) that suggested two classification techniques to classify conservation or maintenance zones, and reclassify maintenance zones into restoration or recreation zones. The suggested classification techniques of river zones were used to estimate 46 reaches of 20 urban streams, 47 reaches of 29 rural streams, and 48 reaches of 19 mountainous streams to achieve a purpose of this study. The conservation, restoration, and recreation zones were reasonably divided by results of the suggested techniques. A possibility that quantified criterion could be used to classify river zones was proven in this study.

Spatial Analysis of Precipitation with PRISM in Gangwondo (강원도 지역의 PRISM를 이용한 강우의 공간분포 해석)

  • Um, Myoung-Jin;Jeong, Chang-Sam
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.3
    • /
    • pp.179-188
    • /
    • 2011
  • In this study, the regional factors in Gangwondo were used to analysis the relationship between point precipitation and areal precipitation. The most province area in Gangwondo is consist of mountainous terrain. At the east part of the Taebaek Mountains, the slope is very steep and the coastal plains don't exist. At the west part of the Taebaek Mountains, the slope is mild, there are many rivers, such as South Han-river and North Han-river, and the regions are very complex terrain. The data of 66 stations in Gangwondo and the PRISM (Parameter-elevation Regression on Indepedent Slope Model) were used to estimate the spatial distribution of precipitation. According to the topographic conditions, such as elevation and slope, and the regional conditions, such as Youngdong and Youngseo, the spatial distribution of precipitation is well shown. At the results of cross-validation, the RRBIAS and the RRMSE are under 0.1 and therefore the analysis of the PRISM are well conducted. Consequently the PRISM in this study is a appropriate method to estimate the spatial distribution of precipitation in Gangwondo.

A Hydrological Analysis of Current Status of Turbid Water in Soyang River and Its Mitigation (소양강 탁수 현황과 저감에 대한 수리학적 분석)

  • Lee, Jin-Yong
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.6
    • /
    • pp.85-92
    • /
    • 2008
  • Water in Soyang River is an essential source for citizens of Chuncheon and Seoul areas. In 2006, turbid water in Soyang River aggravated by the typhoon Ewiniar, sustained for over 280 days unlike conventional years, then which interrupted water supply of Chuncheon and Seoul areas. Soil erosion derived from high cool lands constituting about 55% of Soyang River area is considered one of main causes for the turbid water, including imprudent development of mountainous area, road expansion, and road construction for forestry. According to analysis of turbidity, precipitation and reservoir level in Soyang River region for June 2006${\sim}$August 2008, the turbidity showed a peak correlation (r = 0.28) at a lag time of 49 days and especially did an excellent correlation (r = 0.60) with the reservoir level at a lag of 4 days. In the meantime, a critical turbidity of 31 NTU at Soyanggang Dam was estimated, over which would cause turbid water at Paldang Dam. In addition, a master recession curve was suggested, from which sustaining time of turbid water can be predicted.

Geomorphological significance and role of the sand bars of major river valleys in the South Korea - case study on the Nakdong river valleys - (한국 하천 모래톱의 지형학적 의미와 효능 - 낙동강 하곡을 사례로 -)

  • OH, Kyung-Seob;YANG, Jae-Hyuk;CHO, Heon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.18 no.2
    • /
    • pp.1-14
    • /
    • 2011
  • Remarkable development of sand bars is an important characteristic of fluviatile landform of Korea. Their development owes, in one part, to the supply of abundant sandy materials to river valley floor, originated from the weathering of essentially granitic rocks, distributed almost all over the country. It owes, in other part, to river valley disposition presenting many angular sinuosity guided by fracture grid, impeding regular migration of sandy materials along valley floor. Besides, high amplitude of river discharge fluctuation of the country plays is proved to be favorable hydrological factor for the development of the sand bars. The sand bars play important roles in favor of river hydro-ecological environment. They mitigate the amplitude of discharge fluctuation regime. In flood spell, sand grains in the main channel migrate so as to broden wet section. At the spell of low water level, they newly accumulate as to impede rapid stream discharge. Especially high quantity of reserved water in porous space of sand bar is preciously available both for human livelihood and for ecological environment.

Spatial Downscaling Method for Use of GCM Data in A Mountainous Area (산악지역에 GCM 자료를 이용하기 위한 공간 축소방법 개발)

  • Kim, Soojun;Kang, Na Rae;Kim, Yon Soo;Lee, Jong So;Kim, Hung Soo
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.115-125
    • /
    • 2013
  • This study established a methodology for the application of downscaling technique in a mountainous area having large spatial variations of rainfall and tried to estimate the change of rainfall characteristics in the future under climate change using the established method. The Namhan river basin, which is in the mountainous area of the Korean peninsula, has been chosen as the study area. Artificial Neural Network - Simple Kriging with varying local means (ANN-SKlm) has been built by combining artificial neural network, which is one of the general downscaling techniques, and SKlm technique, which can reflect the geomorphologic characteristics like elevation of the study area. The evaluation of SKlm technique was done by using the monthly rainfalls at six weather stations which KMA(Korea Meteorological Administration) is managing in the basin. The ANN-SKlm technique was compared with the Thiessen technique and ordinary kriging(OK) technique. According to the evaluation result of each technique the SKlm technique showed the best result.

Enhancing streamflow prediction skill of WRF-Hydro-CROCUS with DDS calibration over the mountainous basin.

  • Mehboob, Muhammad Shafqat;Lee, Jaehyeong;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.137-137
    • /
    • 2021
  • In this study we aimed to enhance streamflow prediction skill of a land-surface hydrological model, WRF-Hydro, over one of the snow dominated catchments lies in Himalayan mountainous range, Astore. To assess the response of the Himalayan river flows to climate change is complex due to multiple contributors: precipitation, snow, and glacier melt. WRF-Hydro model with default glacier module lacks generating streamflow in summer period but recently developed WRF-Hydro-CROCUS model overcomes this issue by melting snow/ice from the glaciers. We showed that by implementing WRF-Hydro-CROCUS model over Astore the results were significantly improved in comparison to WRF-Hydro with default glacier module. To constraint the model with the observed streamflow we chose 17 sensitive parameters of WRF-Hydro, which include groundwater parameters, surface runoff parameters, channel parameters, soil parameters, vegetation parameters and snowmelt parameters. We used Dynamically Dimensioned Search (DDS) method to calibrate the daily streamflow with the Nash-Sutcliffe efficiency (NSE) being greater than 0.7 both in calibration (2009-2010) and validation (2011-2013) period. Based on the number of iterations per parameter, we found that the parameters related to channel and runoff process are most sensitive to streamflow. The attempts to address the responses of the streamflows to climate change are still very weak and vague especially northwest Himalayan Part of Pakistan and this study is one of a few successful applications of process-based land-surface hydrologic model over this mountainous region of UIB that can be utilized to have an in-depth understanding of hydrological responses of climate change.

  • PDF

Applicability evaluation of radar-based sudden downpour risk prediction technique for flash flood disaster in a mountainous area (산지지역 수재해 대응을 위한 레이더 기반 돌발성 호우 위험성 사전 탐지 기술 적용성 평가)

  • Yoon, Seongsim;Son, Kyung-Hwan
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.4
    • /
    • pp.313-322
    • /
    • 2020
  • There is always a risk of water disasters due to sudden storms in mountainous regions in Korea, which is more than 70% of the country's land. In this study, a radar-based risk prediction technique for sudden downpour is applied in the mountainous region and is evaluated for its applicability using Mt. Biseul rain radar. Eight local heavy rain events in mountain regions are selected and the information was calculated such as early detection of cumulonimbus convective cells, automatic detection of convective cells, and risk index of detected convective cells using the three-dimensional radar reflectivity, rainfall intensity, and doppler wind speed. As a result, it was possible to confirm the initial detection timing and location of convective cells that may develop as a localized heavy rain, and the magnitude and location of the risk determined according to whether or not vortices were generated. In particular, it was confirmed that the ground rain gauge network has limitations in detecting heavy rains that develop locally in a narrow area. Besides, it is possible to secure a time of at least 10 minutes to a maximum of 65 minutes until the maximum rainfall intensity occurs at the time of obtaining the risk information. Therefore, it would be useful as information to prevent flash flooding disaster and marooned accidents caused by heavy rain in the mountainous area using this technique.

Prediction of Lahar Flow Inundation Areas Using LAHARZ_py Program: Application for the Mt. Baekdu Volcano (LAHARZ_py 프로그램을 이용한 라하르 범람지역의 예측: 백두산 화산에 적용)

  • Yun, Sung-Hyo;Chang, Cheolwoo
    • Economic and Environmental Geology
    • /
    • v.50 no.4
    • /
    • pp.277-286
    • /
    • 2017
  • Mt. Baekdu which located the border of North Korea and China, is known as a potentially active volcano in a typical mountainous terrain. A lahar on the volcanic area is one of the important hazard that can cause the loss of life and property damage. In order to comprehensively address the impact of lahar hazard at Mt. Baekdu, we simulated lahar inundation area using Laharz_py. We assumed 750 m of additional elevation for DEM to draw proximal hazard zone boundary (PHZB) of Mt. Baekdu that H/L ratio are selected 0.10. And lahar volumes for simulation were estimated to $1{\times}10^6$, $5{\times}10^6$, $1{\times}10^7$, $5{\times}10^7$, $1{\times}10^8$, $5{\times}10^8$, $1{\times}10^9m^3$, respectively. In the results, 15 streams are located near a proximal hazard zone boundary, Amnok (Yalu) river (south), Toudaosonghua river, Jinjiang river and Huapi river (west-southwest), Songjiang river, Xiaosha river, Caozi river and Sandaosongjian river (west-northwest), Toudaobai river, Erdaobai river and Sandabai river (north), Wudaobai river-1, -2, -3 (northeast) and Duman (Tumen) river (east). The results of this study can be used as basic data to make a hazard map for reduce the damage that can be caused by volcanic hazards occurred on Mt. Baekdu.

Estimation and evaluation on the return period of flash flood for small mountainous watersheds in the Han River basin (한강유역 산지소하천의 돌발홍수 재현기간 산정 및 평가)

  • Kim, Hwa-Yeon;Kim, Jeong-Bae;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.4
    • /
    • pp.245-253
    • /
    • 2019
  • The objectives of this study are to estimate the return period of flash flood and evaluate its appropriateness based on the actual observation events for small mountainous watersheds in the Han River basin. For these goals, Flash Flood Guidance (FFG) was estimated from 1-hr duration Threshold Runoff (TR) and Saturation Deficit (SD) of soil moisture which was derived from Sejong University Rainfall Runoff (SURR) model. Then, the return period of flash flood was calculated by comparing the rainfall quantile to the 1-hr duration rainfall that exceeded the FFG during the past period (2002-2010). Moreover, the appropriateness of the estimated return period of flash flood was evaluated by using the observation events from 2011 to 2016. The results of the return period of flash flood ranged from 1.1 to 19.9 years with a mean and a standard deviation of 1.6 and 1.1 years, respectively. Also, the result of the appropriateness indicated that 83% of the return periods derived from observation events were within the return period of flash flood range. Therefore, the estimated return period of flash flood could be considered as highly appropriate.

Classification of Streams and Application of Channel Evolution Model in Korea (국내유역의 하천분류 및 하도진화모형 적용)

  • Rim, Chang-Soo;Lee, Joon Ho;Jung, Jae Wook;Yoon, Sei Eui
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6B
    • /
    • pp.615-625
    • /
    • 2008
  • In this study, classification of streams was conducted for Ji Stream, a tributary to the Geum River and Yo Stream, a tributary to the Seomjin River, and in addition, channel evolution model to the same streams was applied. The classification approaches suggested by Rosgen and Korea Institute of Construction Technology (KICT) were conducted. The channel evolution model suggested by Schumm et al. (1984) was applied. Based on the application results of Rosgen approach, Ji Stream and Yo stream show the characteristics of mountainous stream with pebbles. The application results of channel evolution model indicated that the current condition of Ji Stream and Yo Stream is a state of equilibrium, balancing the sediment supply and sediment transport capacity. The results of this study can be used as a fundamental data for water control project, river restoration and appropriate channel planning.