• Title/Summary/Keyword: motor unit

Search Result 587, Processing Time 0.03 seconds

Design of a Hub BLDC Motor Driving Systems for the Patrol Vehicles (경계형 차량 구동용 허브 bldc 전동기 구동시스템 설계)

  • Park, Won-seok;Kunn, Young;Lee, Sang-hunn;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.612-615
    • /
    • 2013
  • Hub BLDC(Brushless Direct Current) motor, called wheel-in motor is a outer rotor type high efficient direct driving motor which have a multi-pole permanent magnet type rotor as a driving wheel. This study shows a hub BLDC motor speed controller design methode using PIC micro controller to drive 2 wheels or 3 wheels driving body having hub motor driving shaft. The motor driver unit consists of six discrete MOSFET switching devices and the gate driving module is directly designed for high economy.

  • PDF

High Efficiency Design of Ie4 Class Synrm Subsituting for Induction Motor (슈퍼프리미엄(IE4)급 유도전동기 대체용 동기 릴럭턴스 전동기 고효율 설계연구)

  • Ryu, Gwang-Hyeon;Lee, Ju
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.11
    • /
    • pp.35-40
    • /
    • 2015
  • In accordance with global energy conservation policies such as MEPS (Minimum Energy Performance Standard), electric motor industry is moving to super-high-efficiency machines and research to develop IE4 (International Energy Efficiency Class 4) motors has been launched. In this situation, SynRM (Synchronous Reluctance Motor) has been attracting attention in place of induction motor which hardly provides super premium efficiency. As a result, much research on SynRM is being performed at home and abroad. Also, some products have already been appearing in the market. Compared to induction motor, SynRM has better efficiency per unit area and wider operating range. Although the utilization of control system in synchronous motor results in higher prices, we still need to concentrate on developments of SynRM so as to comply with the new policies. This study demonstrated the electromagnetic design methods of super premium SynRM while maintaining the frame of existing IE3 induction motor. We documented the design procedures for generating high saliency which is the most essential and mechanical stress anlaysis is also treated. In conclusion, we proved the validity of our design by manufacturing and testing our 3 models.

Development of Compact Phase-difference Controller for an Ultrasonic Rotary Motor (회전형 초음파모터의 소형 위상차 제어기 개발)

  • Yi Dong-Chang;Lee Myoung-Hoon;Lee Eu-Hark;Lee Sun-Pyo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.8 s.185
    • /
    • pp.64-71
    • /
    • 2006
  • In this paper, a uniform speed controller for an ultrasonic rotary motor is developed using the phase-difference method. The phase difference method uses traveling waves to drive the ultrasonic motor. The traveling waves are obtained by adding two standing waves that have a different phase to each other. A compact phase-difference driver system is designed and integrated by combining VCO(Voltage Controlled Oscillator) and phase shifter. Theoretically the relationship between the phase difference in time and the rotational speed of the ultrasonic motor is sine function, which is verified by experiments. Then a series of experiments under various loading conditions are conducted to characterize the motor's performance that is the relationship between the speed and torque. Proportional-integral control is adopted for the uniform speed control. The proportional control unit calculates the compensating phase-difference using the rotating speed which is measured by an encoder and fed back. Integral control is used to eliminate steady-state errors. Differential control for reducing overshoot is not used since the response of ultrasonic motor is prompt due to its low inertia and friction-driving characteristics. The developed controller demonstrates reasonable performance overcoming disturbing torque and the changes in material properties due to continuous usage.

A Fuzzy Logical Optimal Efficiency Control of Permanent Magnet Synchronous Motor (PMSM의 퍼지 로직 최적 효율 제어)

  • Zhou, Guang-Xu;Lee, Dong-Hee;Ahm, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.97-99
    • /
    • 2007
  • This paper presents a fuzzy logical control method to implement an on-line optimum efficiency control for Permanent Magnet Synchronous Motor. This method real-timely adjusts the output voltage of the inverter system to achieve the optimum running efficiency of the whole system. At first, the input power is calculated during the steady state in the process of efficiency optimizing. To exactly estimate the steady state of the system, this section needs check up the speed setting on timely. The second section is to calculate input power of dc-bus. The exact measurement of the voltage and current is the vital point to acquire the input power. The third section is the fuzzy logic control unit, which is the key of the whole drive system. Based on the change of input power of dc-bus and output voltage, the variable of output voltage is gained by the fuzzy logical unit. With the on-line optimizing. the whole system call fulfill the minimum input power of dc-bus on the running state. The experimental result proves that the system applied the adjustable V/f control method and the efficiency-optimizing unit possesses optimum efficiency, and it is a better choice for simple variable speed applications such as fans and pump.

  • PDF

반도체 설비의 Fan Filter Unit 에서 발생하는 진동이 Wafer 생산성에 미치는 영향

  • Jo, Gwi-Yeong
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.04a
    • /
    • pp.121-121
    • /
    • 2014
  • 본 연구에서는 반도체 제조의 Diffusion 공정설비의 FFU (Fan Filter Unit) 진동에 의해 발생한 wafer 불량 현상을 규명 및 개선하였다. EFEM(Equipment Front End Module)의 Loading 부에 장착된 FOUP(Front Opening Unified Pod)에 들어 있는 Wafer 들이 설비 EFEM 하부로 떨어져 깨지거나 FOUP 내에서 겹침 현상이 발생하는 것을 확인하였다. 이에 생산현장의 모든 Diffusion 공정 설비를 조사하였으며, 그 결과 A 사(社)의 특정 설비에서만 발생되는 현상임을 확인하였다. 해당 A사(社)설비군에서만 월 평균 10 건의 Slot Mapping Error 가 발생하였으며, 이로 인해 Wafer가 재 제조된 매수가 월 평균 53 매로 확인되었다. 따라서 본 연구는 A 사(社)설비에서 발생하는 Mapping Error 의 원인 규명 및 개선을 위해 추진되었다. 총 12 개의 항목을 불량 발생 원인 후보 군으로 선정 후 예비 진단한 결과 FFU(Fan Filter Unit)에 의한 문제 발생 가능성이 가장 높을 것으로 추정되었다. 이에 따라 4 개의 서로 다른 물리적 환경/조건에서 진동을 측정하였으며, 최종 평가 결과 Motor 와 Blade 의 불균형에서 기인한 진동이 설비의 loader 부에 직접적으로 영향을 주는 것을 확인하였다. 진동 문제를 해결하기 위해 고 RPM blade 에서 저 RPM 및 유량 감소를 보완할 수 있는 신규모델로 교체하였다. 신규 Module(blade/motor) 장착 후 Load port 에서의 진동 측정 결과 개선 전 대비 91% 감소하였으며, 결과적으로 Slot mapping error 발생 건수가 50% 이상 감소되는 효과와 Wafer 재 제조 매수도 월 평균 약 43% 감소하는 효과를 얻을 수 있었다.

  • PDF

Comparative LCA of three types of Interior Panel(IP) in Electric Motor Unit(EMU) (전동차 내장패널(Interior Panel)에 대한 비교 전과정평가)

  • Choi, Yo-Han;Lee, Sang-Yong;Kim, Yong-Ki;Lee, Kun-Mo
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.584-588
    • /
    • 2007
  • A comparative Life Cycle Assessment(LCA) among three types of Electric Motor Unit(EMU) Interior Panel(IP) was conducted. A functional unit for comparative LCA is a weight of IP for 1 EMU. It assumed that Manufacturing stage and its upstream processes, Use stage and End of Life(EoL) stage are included in the boundary of product system. For Use stage, the weight of IP causes electricity consumption. It is assumed that aluminum IP is recycled and the other IPs are incinerated at the EoL stage. As comparison results, aluminum IP has much larger environmental impact(5.162pt) than others(FRP IP; 4.069pt, Phenol IP; 4.053pt) even though recycling consideration is included. The manufacturing stage of aluminum has relative big envrionmental impact(1.824pt) and this point make the most important difference from other IPs(FRP IP; 0.1617pt, Phenol IP; 0.4534pt)). Despite of large weight difference between FRP IP(888.56Kg) and phenol IP(315Kg), the final environmental impact result has only little difference(0.016pt, 0.39%). With this result, the EMU designer can choose IP with a consideration of the environmental performance of IP.

  • PDF

A Time-Varying Gain Super-Twisting Algorithm to Drive a SPIM

  • Zaidi, Noureddaher;Jemli, Mohamed;Azza, Hechmi Ben;Boussak, Mohamed
    • Journal of Power Electronics
    • /
    • v.13 no.6
    • /
    • pp.955-963
    • /
    • 2013
  • To acquire a performed and practical solution that is free from chattering, this study proposes the use of an adaptive super-twisting algorithm to drive a single-phase induction motor. Partial feedback linearization is applied before using a super-twisting algorithm to control the speed and stator currents. The load torque is considered an unknown but bounded disturbance. Therefore, a time-varying switching gain that does not require prior knowledge of the disturbance boundary is proposed. A simple sliding surface is formulated as the difference between the real and desired trajectories obtained from the indirect rotor flux oriented control strategy. To illustrate the effectiveness of the proposed control structure, an experimental setup around a digital signal processor (dS1104) is developed and several tests are performed.

A Design of the Intelligent Motor Control Center Using the Graphic Editor (그래픽 에디터를 이용한 지능형 전동기 제어반 설계)

  • Lee, Sung-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.3
    • /
    • pp.128-132
    • /
    • 2006
  • The previous MCCs(Motor Control Centers) have the demerits of high cost and much manhour for rework because it is impossible for us to standardize the previous MCCs and they have many manual connections. The customers require the products which can operate with the SCADA system by digitalizing the functions of the current MCCs and the systematized products with capability of remote control. To solve these disadvantages and requirements, we developed the Intelligent Motor Control Center. This system has the various functions such as protection, measuring, and communication. Using these functions, we can monitor motor status through communication with the upper system and define the circuit for lowering connection costs according tn starting type and shortening the manufactural period by the graphic editor. The development of this system results in establishment of the competitive structure with domestic area and Perfect automatic monitoring through linkage with the SCADA system.

Speed Control of Induction Motor Drive for FCU Using TMS320LF2406 DSP controller (TMS320LF2406 DSP를 이용한 FCU용 유도 전동기 속도제어)

  • Choi Woo-Suk;Kim Lee-Hun;Park Kyu-Hyun;Won Chung-Yuen;Lee Sang-Suk;Choi Chang-Young
    • Proceedings of the KIPE Conference
    • /
    • 2001.12a
    • /
    • pp.3-6
    • /
    • 2001
  • This paper designs a drive for high efficiency of the 3-phase IM (induction motor) for FCU(Fan Coil Unit). The speed control system of 3-phase IM for FCU has been implemented by a TMS320LF2406 DSP chip. The DSP TMS320LF2406, which include the most peripheral circuit for control of the Industrial motor suitable for AC motor drive. This type of the controller can be obtained low cost and high reliance. The proposed drive system of the 3-phase IM for the FCU is verified by simulation. The results show the speed control characteristics of the control strategy Proposed for 3-Phase IM drive.

  • PDF