• Title/Summary/Keyword: motor protein

Search Result 137, Processing Time 0.029 seconds

Korean red ginseng suppresses mitochondrial apoptotic pathway in denervation-induced skeletal muscle atrophy

  • Ji-Soo Jeong;Jeong-Won Kim;Jin-Hwa Kim;Chang-Yeop Kim;Je-Won Ko;Tae-Won Kim
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.52-58
    • /
    • 2024
  • Background: Skeletal muscle denervation leads to motor neuron degeneration, which in turn reduces muscle fiber volumes. Recent studies have revealed that apoptosis plays a role in regulating denervation-associated pathologic muscle wasting. Korean red ginseng (KRG) has various biological activities and is currently widely consumed as a medicinal product worldwide. Among them, ginseng has protective effects against muscle atrophy in in vivo and in vitro. However, the effects of KRG on denervation-induced muscle damage have not been fully elucidated. Methods: We induced skeletal muscle atrophy in mice by dissecting the sciatic nerves, administered KRG, and then analyzed the muscles. KRG was administered to the mice once daily for 3 weeks at 100 and 400 mg/kg/day doses after operation. Results: KRG treatment significantly increased skeletal muscle weight and tibialis anterior (TA) muscle fiber volume in injured areas and reduced histological alterations in TA muscle. In addition, KRG treatment reduced denervation-induced apoptotic changes in TA muscle. KRG attenuated p53/Bax/cytochrome c/Caspase 3 signaling induced by nerve injury in a dose-dependent manner. Also, KRG decreases protein kinase B/mammalian target of rapamycin pathway, reducing restorative myogenesis. Conclusion: Thus, KRG has potential protective role against denervation-induced muscle atrophy. The effect of KRG treatment was accompanied by reduced levels of mitochondria-associated apoptosis.

High Expression of KIFC1 in Glioma Correlates with Poor Prognosis

  • Pengfei Xue;Juan Zheng;Rongrong Li;Lili Yan;Zhaohao Wang;Qingbin Jia;Lianqun Zhang;Xin Li
    • Journal of Korean Neurosurgical Society
    • /
    • v.67 no.3
    • /
    • pp.364-375
    • /
    • 2024
  • Objective : Kinesin family member C1 (KIFC1), a non-essential kinesin-like motor protein, has been found to serve a crucial role in supernumerary centrosome clustering and the progression of several human cancer types. However, the role of KIFC1 in glioma has been rarely reported. Thus, the present study aimed to investigate the role of KIFC1 in glioma progression. Methods : Online bioinformatics analysis was performed to determine the association between KIFC1 expression and clinical outcomes in glioma. Immunohistochemical staining was conducted to analyze the expression levels of KIFC1 in glioma and normal brain tissues. Furthermore, KIFC1 expression was knocked in the glioma cell lines, U251 and U87MG, and the functional roles of KIFC1 in cell proliferation, invasion and migration were analyzed using cell multiplication, wound healing and Transwell invasion assays, respectively. The autophagic flux and expression levels matrix metalloproteinase-2 (MMP2) were also determined using imaging flow cytometry, western blotting and a gelation zymography assay. Results : The results revealed that KIFC1 expression levels were significantly upregulated in glioma tissues compared with normal brain tissues, and the expression levels were positively associated with tumor grade. Patients with glioma with low KIFC1 expression levels had a more favorable prognosis compared with patients with high KIFC1 expression levels. In vitro, KIFC1 knockdown not only inhibited the proliferation, migration and invasion of glioma cells, but also increased the autophagic flux and downregulated the expression levels of MMP2. Conclusion : Upregulation of KIFC1 expression may promote glioma progression and KIFC1 may serve as a potential prognostic biomarker and possible therapeutic target for glioma.

Immunohistochemical Localization of Nerve Growth Factor, Glial Fibrillary Acidic Protein and Ciliary Neurotrophic Factor in the Forebrain of the Developing Mongolian Gerbil (발생중인 Mongolian gerbil의 전뇌에서 NGF, GFAP 및 CNTF의 분포)

  • Park, Il-Kwon;Lee, Kyoug-Youl;Song, Chi-Won;Kwon, Hyo-Jung;Park, Mi-Sun;Lee, Mi-Young;Jeong, Young-Gil;Lee, Chul-Ho;Ha, Kwon-Soo;Lee, Kang-Yi;Kim, Moo-Kang
    • Korean Journal of Veterinary Research
    • /
    • v.42 no.2
    • /
    • pp.137-146
    • /
    • 2002
  • The immunohistochemical localization of the nerve growth factor (NGF), glial fibrillary acidic protein (GFAP) and ciliary neurotrophic factor (CNIF) in the developing Mongolian gerbil forebrain was investigated by the immunohistochemical and electron microscopy methods. Generally, the NGF specifically recognizes the neurons, the GFAP does the glia, and the CNIF does the motor neurons. This study demonstrates the location of the NGF, GFAP and CNTF in the developing Mongolian gerbil from the embryonic days 17 (E17) to the postnatal weeks 3 (PNW 3). The NGF was localized at E19 in the olfactocy bulb and the cerebral cortex, expanded to the hippocampus, and the diagonal bond from the late prenatal period to PNW 3. GFAP was observed in the lateral ventricle and the third ventricle at E17, projected into the cerebral cortex at E19. The GFAP was observed to have the largest numbers in several parts of the forebrain at the postnatal days 2 (PND2), while the most numerous CNTF was observed at PNW 2. The CNTF-IR cells were observed only in the postnatal days and were found in the olfactory bulb, cerebral cortex both neuron and neuroglia at PND3. Electron microscopy showed that the NGF, GFAP and CNTF were not related to any connections with any particular subcellular structure. These results suggest that NGF, GFAP and CNTF be related to the neuron and neuroglia at the prenatal and postnatal stages in the developing Mongolian gerbil.

Identification and Clinical Implications of Novel MYO15A Mutations in a Non-consanguineous Korean Family by Targeted Exome Sequencing

  • Chang, Mun Young;Kim, Ah Reum;Kim, Nayoung K.D.;Lee, Chung;Lee, Kyoung Yeul;Jeon, Woo-Sung;Koo, Ja-Won;Oh, Seung Ha;Park, Woong-Yang;Kim, Dongsup;Choi, Byung Yoon
    • Molecules and Cells
    • /
    • v.38 no.9
    • /
    • pp.781-788
    • /
    • 2015
  • Mutations of MYO15A are generally known to cause severe to profound hearing loss throughout all frequencies. Here, we found two novel MYO15A mutations, c.3871C>T (p.L1291F) and c.5835T>G (p.Y1945X) in an affected individual carrying congenital profound sensorineural hearing loss (SNHL) through targeted resequencing of 134 known deafness genes. The variant, p.L1291F and p.Y1945X, resided in the myosin motor and IQ2 domains, respectively. The p.L1291F variant was predicted to affect the structure of the actin-binding site from three-dimensional protein modeling, thereby interfering with the correct interaction between actin and myosin. From the literature analysis, mutations in the N-terminal domain were more frequently associated with residual hearing at low frequencies than mutations in the other regions of this gene. Therefore we suggest a hypothetical genotype-phenotype correlation whereby MYO15A mutations that affect domains other than the N-terminal domain, lead to profound SNHL throughout all frequencies and mutations that affect the N-terminal domain, result in residual hearing at low frequencies. This genotype-phenotype correlation suggests that preservation of residual hearing during auditory rehabilitation like cochlear implantation should be intended for those who carry mutations in the N-terminal domain and that individuals with mutations elsewhere in MYO15A require early cochlear implantation to timely initiate speech development.

The Effect of Treadmill Exercise on Ischemic Neuronal Injury in the Stroke Animal Model: Potentiation of Cerebral Vascular Integrity (중풍 동물 모델에서의 트레드밀 운동이 허혈성 신경손상에 미치는 효과: 뇌혈관 통합성 강화)

  • Kang, Kyoung-Ah;Seong, Ho-Hyun;Jin, Han-Byeol;Park, Jong-Min;Lee, Jong-Min;Jeon, Jae-Yong;Kim, Youn-Jung
    • Journal of Korean Academy of Nursing
    • /
    • v.41 no.2
    • /
    • pp.197-203
    • /
    • 2011
  • Purpose: This study was done to identify whether pre-conditioning exercise has neuroprotective effects against cerebral ischemia, through enhance brain microvascular integrity. Methods: Adult male Sprague-Dawley rats were randomly divided into four groups: 1) Normal (n=10); 2) Exercise (n=10); 3) Middle cerebral artery occlusion (MCAo), n=10); 4) Exercise+MCAo (n= 10). Both exercise groups ran on a treadmill at a speed of 15 m/min, 30 min/day for 4 weeks, then, MCAo was performed for 90 min. Brain infarction was measured by Nissl staining. Examination of the remaining neuronal cell after MCAo, and microvascular protein expression on the motor cortex, showed the expression of Neuronal Nuclei (NeuN), Vascular endothelial growth factor (VEGF) & laminin. Results: After 48 hr of MCAo, the infarct volume was significantly reduced in the Ex+MCAo group ($15.6{\pm}2.7%$) compared to the MCAo group ($44.9{\pm}3.8%$) (p<.05), and many neuronal cells were detected in the Ex+ MCAo group ($70.8{\pm}3.9%$) compared to the MCAo group ($43.4{\pm}5.1%$) (p<.05). The immunoreactivity of laminin, as a marker of microvessels and Vascular endothelial growth factor (VEGF) were intensively increased in the Ex+MCAo group compared to the MCAo group. Conclusion: These findings suggest that the neuroprotective effects of exercise pre-conditioning reduce ischemic brain injury through strengthening the microvascular integrity after cerebral ischemia.

Comparative analysis on genome-wide DNA methylation in longissimus dorsi muscle between Small Tailed Han and Dorper×Small Tailed Han crossbred sheep

  • Cao, Yang;Jin, Hai-Guo;Ma, Hui-Hai;Zhao, Zhi-Hui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.11
    • /
    • pp.1529-1539
    • /
    • 2017
  • Objective: The objective of this study was to compare the DNA methylation profile in the longissimus dorsi muscle between Small Tailed Han and Dorper${\times}$Small Tailed Han crossbred sheep which were known to exhibit significant difference in meat-production. Methods: Six samples (three in each group) were subjected to the methylated DNA immunoprecipitation sequencing (MeDIP-seq) and subsequent bioinformatics analyses to detect differentially methylated regions (DMRs) between the two groups. Results: 23.08 Gb clean data from six samples were generated and 808 DMRs were identified in gene body or their neighboring up/downstream regions. Compared with Small Tailed Han sheep, we observed a tendency toward a global loss of DNA methylation in these DMRs in the crossbred group. Gene ontology enrichment analysis found several gene sets which were hypomethylated in gene-body region, including nucleoside binding, motor activity, phospholipid binding and cell junction. Numerous genes were found to be differentially methylated between the two groups with several genes significantly differentially methylated, including transforming growth factor beta 3 (TGFB3), acyl-CoA synthetase long chain family member 1 (ACSL1), ryanodine receptor 1 (RYR1), acyl-CoA oxidase 2 (ACOX2), peroxisome proliferator activated receptor-gamma2 (PPARG2), netrin 1 (NTN1), ras and rab interactor 2 (RIN2), microtubule associated protein RP/EB family member 1 (MAPRE1), ADAM metallopeptidase with thrombospondin type 1 motif 2 (ADAMTS2), myomesin 1 (MYOM1), zinc finger, DHHC type containing 13 (ZDHHC13), and SH3 and PX domains 2B (SH3PXD2B). The real-time quantitative polymerase chain reaction validation showed that the 12 genes are differentially expressed between the two groups. Conclusion: In the current study, a tendency to a global loss of DNA methylation in these DMRs in the crossbred group was found. Twelve genes, TGFB3, ACSL1, RYR1, ACOX2, PPARG2, NTN1, RIN2, MAPRE1, ADAMTS2, MYOM1, ZDHHC13, and SH3PXD2B, were found to be differentially methylated between the two groups by gene ontology enrichment analysis. There are differences in the expression of 12 genes, of which ACSL1, RIN2, and ADAMTS2 have a negative correlation with methylation levels and the data suggest that DNA methylation levels in DMRs of the 3 genes may have an influence on the expression. These results will serve as a valuable resource for DNA methylation investigations on screening candidate genes which might be related to meat production in sheep.

Ultrastructural Study on the Cerebellar Purkinje Cell of the Head-Irradiated Rat (과량의 방사선 국소조사가 흰쥐 소뇌 Purkinje세포의 미세구조에 미치는 영향)

  • Ahn, E-Tay;Yoon, Kyoo-Tae;Yang, Nam-Gil;Ko, Jeong-Sik;Park, Kyung-Ho;Kim, Jin-Gook
    • Applied Microscopy
    • /
    • v.24 no.2
    • /
    • pp.48-62
    • /
    • 1994
  • The acute irradiation effect on rat Purkinje cell was carried out. Anesthetized rats, weighing 200-250g each, were exposed their heads to the linear accelerator (ML-4MV) with the doses of 3,000 rads or 6,000 rads respectively. Irradiated rats were sacrificed by perfusion fixation under anesthesia, six hours, two days and six days following the irradiations. Rats were perfused with the fixative of 1% glutaraldehyde-1% paraformaldehyde solution (pH 7.4). Small pieces of cerebellar cortices were taken out. Tissue blocks were washed out, and were refixed in the 2% osmium tetroxide solution. After dehydration, tissues were embedded in the araldite mixture. Ultrathin sections stained with uranyl acetate-lead citrate solution, were examined with an electron microscope. The results observed were as follow; 1. Many dark Purkinje cells exhibited most severe cellular alterations on 6 hours. But after the 2 or 6 days, the cells exhibited only some alterations of cytoplasmic organelles. 2. Many granular and agranular endoplasmic reticula exhibited the fusion of cisterns. These reticular alterations were most severe on 6 hours following irradiation. But the alterations were hardly found on 6 days. 3. In the Golgi region, alterations including the adhesion of lamelliform cisterns, enlarged saccules, and increased number of vesicles, etc, were seen on 6 hours. But the Golgi complexes were almost recovered on 6 days. 4. Lysosomes were abundant on 6 hours or 2 days, but some residual bodies were found on 6 days. 5. Mitochondrial changes were also most severe at on hours, and they were recovered thereafter. From the results, it was concluded that the cerebellar Purkinje cells reacted to the high doses of irradiation by hyperactive protein synthesis, autolytic activities and energy metabolism. The reaction was most active in the early stage. It implies that motor-control function of Purkinje cells are severely disturbed in the early stage of irradiation.

  • PDF

A Case of Childhood Cerebral Form Adrenoleukodystrophy with Novel Mutation in the ABCD1 Gene (새로운 ABCD1 유전자의 돌연변이를 가지는 소아 대뇌형 부신백질이영양증 1례)

  • Shin, Young-Lim
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.12 no.1
    • /
    • pp.49-53
    • /
    • 2012
  • X-linked adrenoleukodystrophy (ALD) is a rare inherited metabolic disease which results in impaired peroxisomal ${\beta}$-oxidation and the accumulation of very long chain fatty acids (VLCFA) in the adrenal cortex, the myelin of the central nervous system, and the testes. X-linked ALD is caused by mutations in the ABCD1 gene encoding an ATP-binding cassette transporter superfamily located in the peroxisomal membrane. This disease is characterized by a variety of phenotypes. The classic childhood cerebral ALD is a rapidly progressive demyelinating condition affecting the cerebral white matter before the age of 10 years in boys. We report the case of a 8-year-old with childhood cerebral X-linked ALD who developed inattention, hyperactivity, motor incoordination and hemiparesis. We diagnosed ALD with elevated plasma very long chain fatty acid level and diffuse high signal intensity lesions in both parieto-occipital white matter and cerebellar white matter in brain MRI. We identified a novel c.983delT (p.Met329CysfsX7) mutation of the ABCD1 gene. There is no correlation between X-ALD phenotype and mutations in the ABCD1 gene. Further studies for searching additional non-genetic factor which determine the phenotypic variation will be needed.

  • PDF

Histopathologic Features and CD5+ B-lymphocyte Expression in the Experimental Allergic Neuritis (실험적 자가면역성 말초신경염에서의 조직병리적 병변 및 CD5+ B-림프구의 발현)

  • Cho, Joong-Yang;Choi, Won-Jun;Kim, Sung-Hun;Sung, Jung-Joon;Kim, Ho-Jin;Park, Kyung-Seok;Choi, Ki-Young;Kim, Hyun-Jung;Lee, Kwang-Woo
    • Annals of Clinical Neurophysiology
    • /
    • v.1 no.2
    • /
    • pp.91-98
    • /
    • 1999
  • Background : The pathogenesis of acute inflammatory demyelinating polyradiculoneuropathy (AIDP), Guillain Barre syndrome (GBS) is not clear, but it has been known that the immune mechanisms play an important role. Authors performed this study to establish an animal model of experimental allergic neuritis (EAN) by immunizing the myelin components of peripheral nerves and to understand the electrophysiological and histopathological features as well as the ${CD_5}^+$ B-lymphocyte changes in peripheral bloods in the EAN models. Methods : Lewis rats weighing 150-200 gm were injected subcutaneously in soles two times with total myelin, P0, P1, or P2 proteins purified from the bovine cauda eguina. The EAN induction was assessed by evaluating clinical manifestations. The electrophysiological and histopathological features were studied as routine methods. The ${CD_5}^+$ Blymphocytes were double stained using monoclonal FITC conjugated anti-rat CD45RA and R-PE conjugated anti-rat ${CD_5}^+$ antibodies and calculated using a fluorescence activated cell sorter (FACS). Results : The EAN animal models were established. In two out of five, in one out of two, in none out of three, and in none out of one Lewis rats injected with purified total myelin, P0, P1, P2 proteins respectively, They showed slow spontaneous motor activity and weak resistance against pulling back by tails. The typical electrophysiological and histologic findings in total protein and P0 induced EAN animal models were the decreased conduction velocity, the decreased compound muscle action potential (CMAP) amplitude and the dispersion phenomenon. The perivascular infiltrates of lymphocytes with focal demyelinating process were found in light microscopy. The ${CD_5}^+$ B-lymphocyte expression in three EANs were 2.38%, 3.50% 2.50%, which were not significantly increased, compared with those in normal controls. Conclusion : The EAN animal models were successfully established by injecting the total myelin and P0 myelin and they showed electrophysiological and histological features typical of demyelinating process. However they did not show an increased expression of ${CD_5}^+$ B-lymphocyte in peripheral bloods which could be indirect evidence of humoral autoimmunity.

  • PDF

Protective Effects of Quercetin-3-O-glucuronide against 1-methyl-4-phenylpyridinium-induced Neurotoxicity (1-methyl-4-phenylpyridinium으로 유도된 신경 손상에 대한 quercetin-3-O-glucuronide의 보호 효과)

  • Pariyar, Ramesh;Bastola, Tonking;Seo, Jungwon
    • Journal of Life Science
    • /
    • v.29 no.2
    • /
    • pp.191-197
    • /
    • 2019
  • Parkinson's disease (PD) is a progressive neurodegenerative disease that mainly affects motor system with clinical features such as bradykinesia, rigidity, tremor and abnormal posture. PD is characterized by the death of dopaminergic neurons in the substantia nigra pars compacta, which is associated with accumulation of oxidative stress and dysregulation of intracellular signaling pathway. Quercetin-3-O-glucuronide (Q3GA), a major metabolite of quercetin, has been reported to have neuroprotective effects. In this study, we examined the neuroprotective effect of Q3GA against 1-methyl-4-phenyl pyridinium ($MPP^+$)-induced neurotoxicity of PD and the underlying molecular mechanisms in SH-SY5Y cells. MTT and LDH assay showed that Q3GA significantly decreased $MPP^+$-induced cell death, which is accompanied by a reduction in poly (ADP-ribose) polymerase (PARP) cleavage. Furthermore, it attenuated $MPP^+$-induced intracellular reactive oxygen species (ROS) with the reduction of Bax/ Bcl-2 ratio. Moreover, Q3GA significantly increased the phosphorylation of Akt and cAMP response element binding protein (CREB), but it has no effects on the phosphorylation of extracellular signal-regulated kinase (ERK). Taken together, these results demonstrate that Q3GA significantly attenuates $MPP^+$-induced neurotoxicity through ROS reduction and Akt/CREB signaling pathway in SH-SY5Y cells. Our findings suggest that Q3GA might be one of the potential candidates for the prevention and/or treatment of PD.