• Title/Summary/Keyword: motor design

Search Result 4,317, Processing Time 0.032 seconds

Analysis of failure rate according to capacitor position of bidirectional converter (양방향 컨버터의 커패시터 위치에 따른 고장률 분석)

  • Kim, Ye-rin;Kang, Feel-soon
    • Journal of IKEEE
    • /
    • v.23 no.1
    • /
    • pp.261-265
    • /
    • 2019
  • We analyze the failure rate change of a conventional bidirectional converter and a modified one which moves an output capacitor towards propulsion battery. We analysis of the circuit structural homogeneity and the difference between both converters, and confirm that the capacitor working voltage is reduced by changing the capacitor position. After obtaining the capacitor failure rate according to voltage stress factor and operating temperature, it is applied to the fault-tree of the bidirectional converter to obtain the overall failure rate of the converter. We analyzes the advantages and disadvantages of design changes by comparing and analyzing the failure rate and mean time between failures (MTBF) according to operating temperature and capacitance value.

Investigation of System Efficiency of an Electro-hydrostatic Actuator with an External Gear Pump (소형 외접기어펌프를 사용하는 EHA의 시스템 효율 분석)

  • Kim, Jong-Hyeok;Hong, Yeh-Sun
    • Journal of Drive and Control
    • /
    • v.16 no.2
    • /
    • pp.15-21
    • /
    • 2019
  • In this study, the maximum system efficiency of the electro-hydrostatic actuators was experimentally investigated, where small size external gear pumps with volumetric displacement under 1.3 cc/rev were combined with a 400W servomotor as the prime mover. Since the efficiency data of the servomotor, gear pumps and hydraulic cylinder were not provided by the suppliers, experimental apparatuses for their efficiency measurement were extra built up. When a gear pump with a volumetric displacement of 1.27cc/rev was used on an electro-hydrostatic actuator system, the maximum system efficiency was not higher than 70%. This was because the most effective operation ranges of the motor and pump did not coincide each other. In order to match their operation ranges as one of the most crucial design factors, a speed reduction mechanism can be used, such as a timing belt. It was shown in the study that the maximum system efficiency could be increased from 70% to 76% in that way.

Evaluation of the Grinding Performance of an Engine Block Honing Stone through Monitoring of Workload and Heat Generation (작업부하 및 발열 모니터링에 의한 엔진블록 호닝스톤 연삭성 평가)

  • Yun, Jang-Woo;Kim, Sang-Beom
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.69-75
    • /
    • 2019
  • Since gasoline engines are based on a combination of a cast iron liner and an aluminum block, which have different thermal properties and stiffnesses, bore shape distortion is likely to occur during honing due to uneven thermal deformation. To solve this problem, many tests and evaluations are needed to support the development of a high-performance honing stone with low heat generation. Moreover, performance evaluation, which depends on inspection and observation after work, often requires much trial and error to optimize tool design, due to challenges in the accurate interpretation of results. This study confirmed that the assessment of grinding capability was clarified by evaluating performance under severe work conditions and by in-situ measurement and recording of current consumption (workload) and heat generation during operation. As a result of using a honing stone with excellent grinding performance in engine block manufacture-in which cylinder bore distortion caused by thermal deformation during manufacture is a problem-a noticeable improvement in the degree of cylindricity was observed.

The effect of backward walking training on balance, balance confidence and falls efficacy in patients with acute stroke: A pilot randomized controlled trial (후방 보행훈련이 급성기 뇌졸중 환자의 균형, 균형 자신감, 낙상 효능에 미치는 영향: 무작위 대조군 예비연구)

  • Jung, kyeoung-Man
    • Journal of Korean Physical Therapy Science
    • /
    • v.28 no.2
    • /
    • pp.1-9
    • /
    • 2021
  • Background: The requirements for postural and motor control in backward walking training (BWT) may improve balance and walking speed in patients with acute stroke. The aim of this study was to analyze the effect of BWT on balance, balance confidence, and fall efficacy in this population. Design: Randomized controlled pilot trial. Methods: This study included 14 subjects with acute stroke (onset of illness less than one month). They were randomly allocated to a BWT (n=7) or forward walking training (n=7) group and observed five times in a week for a period of two weeks. Measurements were taken before and after the experiment using the Berg balance scale (BBS), Activities-specific balance confidence scale (ABC), and Fall efficacy scale (FES). Results: The BBS, ABC and FES scores obtained in both groups after the experiment were significantly higher than those before the experiment (p<0.05). In addition, the BBS, ABC, and FES scores in the experimental group were significantly higher than those in the control group (p<0.05). Conclusion: These findings indicate that BWT improved balance and balance confidence and decreased the risks of fall in patients with acute stroke. Further study is needed to better understand the effects of backward walking in acute stroke patients.

Discrete Element Method for Defining the Dynamic Behavior and Abrasion of Gravel in Mixer Trucks during Mixing and Discharging (이산 요소법을 이용한 골재 입자의 혼합 및 배출 시 골재 거동 및 강판 마모에 관한 연구)

  • Ryu, Seung-Hun;Woo, Ho-Kil
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.34-41
    • /
    • 2020
  • Ready-mixed concrete is unconsolidated concrete typically transported to construction sites by using mixer trucks. A proper rotation of concrete is necessary to prevent its solidification in mixer trucks during transport: in accordance with the manufacturing method and quality inspection prescribed in KSF4009, this movement is maintained after the manufacturing of concrete in professional production plants and the addition of water, solid materials, and admixtures. Unfortunately, mixer truck parts wear out over long periods of time. In order to improve the wear resistance of the main part of mixer trucks, we used a steel plate with good wear resistance or partially added a reinforcement plate. In this study, we first tested the properties of concrete (as required for the DEM), and then carried out mixing and discharge simulations to define the actual operating conditions of mixer trucks. For each condition, we calculated the amount and location of wear. The reliability of our results was finally verified by comparing them with the measurement values. Overall, this study provided basic data for an optimal design of mixer trucks: one that would reduce the vehicles' weight and production costs.

Disc Displacement Control of the Emergency Shut-Down Valve for LNG Bunkering (LNG 벙커링용 비상차단 밸브 디스크 변위 제어에 관한 연구)

  • Yoon, Jin Ho;Park, Ju Yeon;Jang, Ji Seong
    • Journal of Drive and Control
    • /
    • v.18 no.4
    • /
    • pp.28-34
    • /
    • 2021
  • Among the currently available types of fuel, LNG emits a relatively small amount of nitrogen oxide and carbon dioxide when it burns in the engine. However, since LNG is a flammable material, leakage during bunkering can lead to accidents, such as fires. Therefore, it is necessary to install a remote operation emergency shut-down (ESD) valve to block the flow and leakage of LNG in an emergency situation that occurs during bunkering. The ESD valve uses a hydraulic driving device consisting of a hydraulic control valve and a hydraulic motor to control globe valve disc displacement, which regulates the flow path for LNG transfer. At this time, there are various nonlinearities in hydraulic driving devices; hence, it is necessary to design a controller with robust control performance against these uncertainties. In this study, modeling of the ESD valve was carried out, and a sliding mode controller to control the displacement of the globe valve disc was designed. As a result, it was confirmed that the designed control performance could be achieved by overcoming nonlinearity characteristics using the designed controller.

A Study on the Low Cost Testing System Development of the Low Speed and High Torque Harsh Reducer (저속 고토크 가혹감속기의 저비용 테스트 시스템 개발에 관한 연구)

  • Park, Taehyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.379-386
    • /
    • 2022
  • The goal of this research is to verify a performance test system for a low speed, high torque, and harsh reducer at low cost. The reducer rotates a cooling fan with a diameter of 10 meters, in a high temperature (50℃) cooling tower in a geothermal power plant. It requires about 500 kgf·m torque and 47.75 kW power to rotate the fan at a maximum power condition. An expensive dynamometer is commonly used for performance test of a motor or a reducer. In this paper, a low cost system is developed using a hydraulic pump as a load unit to generate torque instead of a dynamometer. We accurately calculated the required power, the flow meter, and the pressure of the pump, and selected to design and optimize the system at minimal cost. The system also applied another reverse reducer and a gearbox to increase the rotational speed and to reduce the torque from the low speed and high torque target reducer. This allows low-cost systems to be built using inexpensive components. The developed system was able to successfully measure the high torque and the low rotational speed of the target reducer at high temperature.

Study on Sizing Calculation Method of Fuel Cell Propulsion Multirotor (연료전지 추진 멀티콥터의 사이징 계산 방법에 관한 연구)

  • LEE, DONGKEUN;AHN, KOOKYOUNG;KIM, YOUNGSANG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.542-550
    • /
    • 2021
  • As the application of multirotor grows, the demands for multirotor that can fly longer and load more are increasing. Hydrogen has a high energy density, so it can satisfy these demands when used in multirotor. In order to design hydrogen fueled multirotor that satisfies the desired flight time and payload, it is important to calculate the specifications of a fuel cell, battery, and hydrogen storage system. This paper contains detailed information on various energy systems used in multirotor and fuel cell powered multirotor research trends. This study proposed a sizing calculation method that meets the target flight time and payload using thrust and power equations. It has been explained how the two equations derive the particular specifications. The specifications of the multirotor were derived by assuming a payload of 50 kg and a flight time of 1 hour. In addition, the effects of the values of the fuel cell, hydrogen storage system, and motor propeller were analyzed.

Study on the Hovering Flight Performance of a Single Rotor on a River Surveillance Hexacopter (하천 측량용 헥사콥터의 단일로터에 대한 제자리 비행 성능 연구)

  • Jeong, Won-hoon;Kim, Bong-hwan;Min, Kyoung-moo;Chia, Allie;Park, Geun-woo
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.8
    • /
    • pp.53-59
    • /
    • 2022
  • In this study, an experimental device was fabricated to evaluate the hovering flight performance of a single rotor on a hexacopter used for river surveillance, and a thrust performance test was conducted. In addition, the 3D profile of the propeller was extracted by 3D scanning and CFD analysis was performed using ANSYS CFD 14.5 based on the extracted 3D model of the propeller. The aerodynamic characteristics were compared with the results of the performance tests and CFD analysis, and the vortex structure corresponding to each motor rotational speed in revolutions per minute (rpm) was identified. In the future, we plan to provide valuable data for multicopter propeller design and performance verification.

Online-Effects of Transcranial Direct Current Stimulation on Bimanual Force Control Performances in Healthy Young Adults (실시간 비침습적 뇌전기 자극이 양손 힘 조절능력에 미치는 영향)

  • Tae Lee, Lee;Joon Ho, Lee;Nyeonju, Kang
    • Korean Journal of Applied Biomechanics
    • /
    • v.32 no.4
    • /
    • pp.121-127
    • /
    • 2022
  • Objective: The purpose of this study was to investigate potential effects of transcranial direct current stimulation (tDCS) on bimanual force control capabilities in healthy young adults. Method: Eighteen right-handed healthy young adults (10 females and 8 males; age: 23.55 ± 3.56 yrs) participated in this crossover design study. All participants were randomly allocated to both active-tDCS and sham-tDCS conditions, respectively. While receiving 20 min of active- or sham-tDCS interventions, all participants performed bimanual isometric force control tasks at four submaximal targeted force levels (i.e., 5%, 10%, 15, and 20% of maximal voluntary contraction: MVC). To compare bimanual force control capabilities including force accuracy, variability, and regularity between active-tDCS and sham-tDCS conditions, we conducted two-way repeated measures ANOVAs (2 × 4; tDCS condition × Force levels). Results: We found no significant difference in baseline MVC between active-tDCS and sham-tDCS conditions. Moreover, our findings revealed that providing bilateral tDCS including anodal tDCS on left primary motor cortex (M1) and cathodal on right M1 while conducting bimanual force control trials significantly decreased force variability and regularity at 5%MVC. Conclusion: These findings suggest that providing bilateral tDCS on M1 areas may improve bimanual force control capabilities at a relatively low targeted force level.