Browse > Article
http://dx.doi.org/10.5103/KJSB.2022.32.4.121

Online-Effects of Transcranial Direct Current Stimulation on Bimanual Force Control Performances in Healthy Young Adults  

Tae Lee, Lee (Department of Human Movement Science, Incheon National University)
Joon Ho, Lee (Neuromechanical Rehabilitation Research Laboratory, Incheon National University)
Nyeonju, Kang (Department of Human Movement Science, Incheon National University)
Publication Information
Korean Journal of Applied Biomechanics / v.32, no.4, 2022 , pp. 121-127 More about this Journal
Abstract
Objective: The purpose of this study was to investigate potential effects of transcranial direct current stimulation (tDCS) on bimanual force control capabilities in healthy young adults. Method: Eighteen right-handed healthy young adults (10 females and 8 males; age: 23.55 ± 3.56 yrs) participated in this crossover design study. All participants were randomly allocated to both active-tDCS and sham-tDCS conditions, respectively. While receiving 20 min of active- or sham-tDCS interventions, all participants performed bimanual isometric force control tasks at four submaximal targeted force levels (i.e., 5%, 10%, 15, and 20% of maximal voluntary contraction: MVC). To compare bimanual force control capabilities including force accuracy, variability, and regularity between active-tDCS and sham-tDCS conditions, we conducted two-way repeated measures ANOVAs (2 × 4; tDCS condition × Force levels). Results: We found no significant difference in baseline MVC between active-tDCS and sham-tDCS conditions. Moreover, our findings revealed that providing bilateral tDCS including anodal tDCS on left primary motor cortex (M1) and cathodal on right M1 while conducting bimanual force control trials significantly decreased force variability and regularity at 5%MVC. Conclusion: These findings suggest that providing bilateral tDCS on M1 areas may improve bimanual force control capabilities at a relatively low targeted force level.
Keywords
Transcranial direct current stimulation; Bimanual force control; Isometric; Hand-grip;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Galletly, C., Gill, S., Clarke, P., Burton, C. & Fitzgerald, P. B. (2012). A randomized trial comparing repetitive transcranial magnetic stimulation given 3 days/week and 5 days/week for the treatment of major depression: is efficacy related to the duration of treatment or the number of treatments? Psychological Medicine, 42(5), 981-988.   DOI
2 Goble, D. J. & Brown, S. H. (2008). The biological and behavioral basis of upper limb asymmetries in sensorimotor performance. Neuroscience and Biobehavioral Reviews, 32(3), 598-610.   DOI
3 Godinho, M. M., Junqueira, D. R., Castro, M. L., Loke, Y., Golder, S. & Neto, H. P. (2017). Safety of transcranial direct current stimulation: Evidence based update 2016. Brain Stimulation, 10(5), 983-985.   DOI
4 Greenhouse, S. W. & Geisser, S. (1959). On methods in the analysis of profile data. Psychometrika, 24, 95-112.   DOI
5 Hikosaka, M. & Aramaki, Y. (2021). Effects of bilateral transcranial direct current stimulation on simultaneous bimanual handgrip strength. Frontiers in Human Neuroscience, 15, 674851.
6 Hu, X., Loncharich, M. & Newell, K. M. (2011). Visual information interacts with neuromuscular factors in the coordination of bimanual isometric force. Experimental Brain Research, 209(1), 129-138.   DOI
7 Hu, X. & Newell, K. M. (2011). Visual information gain and task asymmetry interact in bimanual force coordination and control. Experimental Brain Research, 212(4), 497-504.   DOI
8 Jin, Y., Lee, J., Oh, S., Celeste Flores Gimenez, M. & Yoon, B. (2019). Noninvasive brain stimulation over the M1 enhances bimanual force control ability: A randomized double-blind sham-controlled study. Journal of Motor Behavior, 51(5), 521-531.   DOI
9 Kern, D. S., Semmler, J. G. & Enoka, R. M. (2001). Long-term activity in upper- and lower-limb muscles of humans. Journal of Applied Physiology, 91(5), 2224-2232.
10 Krishnan, C., Ranganathan, R., Kantak, S. S., Dhaher, Y. Y. & Rymer, W. Z. (2014). Anodal transcranial direct current stimulation alters elbow flexor muscle recruitment strategies. Brain Stimulation, 7(3), 443-450.   DOI
11 Latash, M. L. & Anson, J. G. (2006). Synergies in health and disease: relations to adaptive changes in motor coordination. Physical Therapy, 86(8), 1151-1160.
12 Lee, H., Park, Y. M. & Kang, N. (2022). Unilateral hand force control impairments in older women. EXCLI Journal, 21, 1231-1244.
13 Lee, Hong, S. & Newell, K. M. (2008). Visual information gain and the regulation of constant force levels. Experimental Brain Research, 189(1), 61-69.   DOI
14 Lee, J. H. & Kang, N. (2020). Effects of online-bandwidth visual feedback on unilateral force control capabilities. PLOS ONE, 15(9), e0238367.
15 Lee, J. H., Lee, T. L. & Kang, N. (2021). Transcranial direct current stimulation decreased cognition-related reaction time in older adults: A systematic review and meta-analysis. Ageing Research Reviews, 70, 101377.
16 Lodha, N., Naik, S. K., Coombes, S. A. & Cauraugh, J. H. (2010). Force control and degree of motor impairments in chronic stroke. Clinical Neurophysiology, 121(11), 1952-1961.
17 Machado, S., Jansen, P., Almeida, V. & Veldema, J. (2019). Is tDCS an adjunct ergogenic resource for improving muscular strength and endurance performance? A systematic review. Frontiers in Psychology, 10, 1127.
18 Nitsche, M. A. & Paulus, W. (2000). Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. Journal of Physiology, 527(Pt 3), 633-639.   DOI
19 Rueda-Delgado, L. M., Solesio-Jofre, E., Serrien, D. J., Mantini, D., Daffertshofer, A. & Swinnen, S. P. (2014). Understanding bimanual coordination across small time scales from an electrophysiological perspective. Neuroscience & Biobehavioral Reviews, 47, 614-635.   DOI
20 Richman, J. S. & Moorman, J. R. (2000). Physiological time-series analysis using approximate entropy and sample entropy. American Journal of Physiology-Heart and Circulatory Physiology, 278(6), H2039-2049.   DOI
21 Salvador, M. G., Ugrinowitsch, H., Romano-Silva, M. A., Miranda, D. M. D., Apolinario-Souza, T. & Lage, G. M. (2017). Transcranial direct current stimulation and manual asymmetries: The effect of the stimulation on the manual dexterity. Journal of Physical Education, 28, e2837
22 Sehm, B., Kipping, J., Schafer, A., Villringer, A. & Ragert, P. (2013). A comparison between uni- and bilateral tDCS effects on functional connectivity of the human motor cortex. Frontiers in Human Neuroscience, 7, 183.
23 Seidler, R. D., Bernard, J. A., Burutolu, T. B., Fling, B. W., Gordon, M. T., Gwin, J. T., . . . Lipps, D. B. (2010). Motor control and aging: links to age-related brain structural, functional, and biochemical effects. Neuroscience & Biobehavioral Reviews, 34(5), 721-733.   DOI
24 Sosnoff, J. J., Valantine, A. D. & Newell, K. M. (2006). Independence between the amount and structure of variability at low force levels. Neuroscience Letters, 392(3), 165-169.   DOI
25 Swinnen, S. P. (2002). Intermanual coordination: from behavioural principles to neural-network interactions. Nature Reviews Neuroscience, 3(5), 348-359.   DOI
26 Swinnen, S. P. & Wenderoth, N. (2004). Two hands, one brain: cognitive neuroscience of bimanual skill. Trends in Cognitive Sciences, 8(1), 18-25.   DOI
27 Walsh, R. R., Small, S. L., Chen, E. E. & Solodkin, A. (2008). Network activation during bimanual movements in humans. Neuroimage, 43(3), 540-553.   DOI
28 Szameitat, A. J., McNamara, A., Shen, S. & Sterr, A. (2012). Neural activation and functional connectivity during motor imagery of bimanual everyday actions. PLOS ONE, 7(6), e38506.
29 Tazoe, T., Endoh, T., Kitamura, T. & Ogata, T. (2014). Polarity specific effects of transcranial direct current stimulation on interhemispheric inhibition. PLOS ONE, 9(12), e114244.
30 Teulings, H. L., Contreras-Vidal, J. L., Stelmach, G. E. & Adler, C. H. (1997). Parkinsonism reduces coordination of fingers, wrist, and arm in fine motor control. Experimental Neurology, 146(1), 159-170.   DOI
31 Yentes, J. M., Hunt, N., Schmid, K. K., Kaipust, J. P., McGrath, D. & Stergiou, N. (2013). The appropriate use of approximate entropy and sample entropy with short data sets. Annals of Biomedical Engineering, 41(2), 349-365.   DOI
32 Brunoni, A. R., Amadera, J., Berbel, B., Volz, M. S., Rizzerio, B. G. & Fregni, F. (2011). A systematic review on reporting and assessment of adverse effects associated with transcranial direct current stimulation. International Journal of Neuropsychopharmacology, 14(8), 1133-1145.   DOI
33 Alix-Fages, C., Romero-Arenas, S., Castro-Alonso, M., Colomer-Poveda, D., Rio-Rodriguez, D., Jerez-Martinez, A., . . . Marquez, G. (2019). Short-term effects of anodal transcranial direct current stimulation on endurance and maximal force production. A systematic review and meta-analysis. Journal of Clinical Medicine, 8(4), 536.
34 Angius, L., Pascual-Leone, A. & Santarnecchi, E. (2018). Brain stimulation and physical performance. Progress in Brain Research, 240, 317-339.   DOI
35 Biabani, M., Farrell, M., Zoghi, M., Egan, G. & Jaberzadeh, S. (2018). Crossover design in transcranial direct current stimulation studies on motor learning: potential pitfalls and difficulties in interpretation of findings. Reviews in the Neurosciences, 29(4), 463-473.   DOI
36 Diedrichsen, J., Hazeltine, E., Nurss, W. K. & Ivry, R. B. (2003). The role of the corpus callosum in the coupling of bimanual isometric force pulses. Journal of Neurophysiology, 90(4), 2409-2418.   DOI
37 Frazer, A. K., Williams, J., Spittle, M. & Kidgell, D. J. (2017). Cross-education of muscular strength is facilitated by homeostatic plasticity. European Journal of Applied Physiology, 117(4), 665-677.   DOI