• Title/Summary/Keyword: motor and reducer

Search Result 45, Processing Time 0.027 seconds

A study on the development of worm gear module for automobile (자동차용 웜기어 모듈 개발에 관한 연구)

  • Kim, Joo-Han;Sung, Ha-Kyeong;Rhyu, Se-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.219-221
    • /
    • 2005
  • Various adjustment devices which present automobile uses electric motion motor of reducer built-in type for user's convenience are increasing. The example are seat control motor, sunroof motor, power windows motor etc. To get low noise, high effectiveness special quality in automobile DC motor of reducer built-in type, reducer department's transmission efficiency and noise, vibration quality are very important. The reducer used to DC motor of automobile reducer built-in type use worm gear for enough torque and proper number of rotation. We need optimization design technology of deceleration module including worm gear and housing for reducer development that have special quality of good quality.

  • PDF

Flexible Multi-body Dynamic Analysis for Reducer-integrated Motor of Autofilter (오토필터의 감속기 일체형 모터에 관한 유연 다물체 동역학 해석)

  • J.K. Kim;B.D. Kim;G.S. Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.5
    • /
    • pp.311-317
    • /
    • 2023
  • An autofilter is a device that removes impurities contained in heavy fuel oil used in diesel engines of ships or power plants, and also automatically removes impurities accumulated in the filter through a reverse washing function. The reducer-integrated motor serves to rotate the filter at low speed to enable reverse automatic cleaning in the autofilter device. To achieve a low speed of 0.65 to 0.75 rpm in a reducer-integrated motor, a small motor that can operate at 97rpm at a rated voltage of 110 V and 112.5 rpm at 220 V is required. Additionally, a large gear ratio of 1/150 is required. To ensure the durability and reliability of these reducers, the strength of the gear must be evaluated at the design stage. In general, there is a limit to evaluating the stress and strain state according to the vibration characteristics acting on each gear in the driving state of the reducer through quasi-static analysis. Therefore, in this study, the operation characteristics of the auto filter's reducer-integrated motor were first analyzed using the rigid body dynamics analysis method. Then, this rigid body dynamics analysis model was extended to a flexible multibody dynamics analysis model to analyze the stress and strain states acting on each gear and evaluate the design feasibility of the gear.

Detection of Absolute Position of Robot Joint Using Incremental Encoders (증분형 엔코더를 이용한 로봇 관절의 절대위치 검출)

  • Lim, Jae Sik;Lee, Young Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.577-582
    • /
    • 2015
  • This paper proposes an efficient detection of absolute position of a robot joint using two incremental encoders. We considers a robot joint comprising a motor, a reducer, two encoders, and a motor drive. An incremental(first) encoder provides motor's rotor position or input position of reducer while another incremental(second) encoder does output position of the reducer. A table is made where the relationship between the first and the second encoder counts is recorded. The key point is placed where the table is constructed: when a pulse occurs in the second encoder, there exists a corresponding unique count value of the first encoder. The absolute position is detected using the table by searching the second encoder position corresponding to the first encoder count value when a pulse occurs in the second encoder. The proposed method needs a small rotation, as just one second encoder's pulse angle, for the initial absolute position detection.

Development of electric Four Wheel Drive System (e-4WD 시스템 개발)

  • Jo, Hee Young
    • Journal of Drive and Control
    • /
    • v.13 no.1
    • /
    • pp.10-17
    • /
    • 2016
  • e-4WD(Electric-4WD) system is a 4WD(4-Wheel Drive) System that can transform a car into a Hybrid System. e-4WD consists of a Motor, Inverter, Speed reducer and Clutch. The Motor, Speed reducer and Clutch are installed on the rear sub-frame as a chassis module type. The inverter is installed separately. Compared to a mechanical 4WD, the e-4WD system has many advantages. For example, the reduced number of drivetrain components makes better use of the space. Driving with a motor only at low speed improves fuel economy and reduces exhaust gas. Engine downsizing is available because the motor assists the engine. The performance of a conventional HEV(Hybrid Electric Vehicle) system can also be maintained. This paper proposes the specifications of components and the control logic for an e-4WD System. And the effect of the e-4WD system is proven using a test vehicle equipped with components under various test conditions.

A Study on the Design of Upward and Downward Traverse Units in an Automatic Object Changer Unit to Establish a Flexible Production System (Part 1) (유연생산 시스템 구축을 위한 공작물 자동교환 유닛의 상하 이송 기구 설계에 관한 연구(파트 1))

  • Park, Hoo-Myung;Kang, Jin-Kab;Lee, Yong-Joong;Ha, Man-Kyung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.7 no.2
    • /
    • pp.45-51
    • /
    • 2008
  • The objective of this study is to develop an automatic object changer unit to improve processing problems existed in the conventional horizontal machining center. In order to perform this objective, a upward and downward traverse unit in which a unit that consists of a motor and reducer, chain and sprocket wheel, and upper and lower base employed in an automatic object changer unit performs sliding contact motion in a frame was designed. To achieve this design, constraint conditions for the upward and downward traverse unit first designed. Then, an operation mechanism was designed and that was introduced as a sum of kinetic energy for the sprocket wheel and upper and lower base based on the moment of inertia, which is the kinetic energy of the converted upward and downward traverse unit in the side of the reducer. In addition, The work required to rotate the converted upward and downward traverse unit in the side of the reducer by one revolution can be calculated using the sum of work that is required in the sprocket wheel and upper and lower base that is a part of the upward and downward traverse unit. Furthermore, the converted equation of motion in the side of the motor can be introduced using the equation of motion using the converted upward and downward traverse unit in the side of the motor. Then, Then, a proper motor can be determined using predetermined specifications employed in the motor and several parameters in the upward and downward traverse unit in order to verify such predetermined specifications. Also, a design of a horizontal traverse unit that performs sliding motion on a upward and downward traverse unit and simulation that verifies the results of this design are required as a future study.

  • PDF

A Study on the Low Cost Testing System Development of the Low Speed and High Torque Harsh Reducer (저속 고토크 가혹감속기의 저비용 테스트 시스템 개발에 관한 연구)

  • Park, Taehyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.3
    • /
    • pp.379-386
    • /
    • 2022
  • The goal of this research is to verify a performance test system for a low speed, high torque, and harsh reducer at low cost. The reducer rotates a cooling fan with a diameter of 10 meters, in a high temperature (50℃) cooling tower in a geothermal power plant. It requires about 500 kgf·m torque and 47.75 kW power to rotate the fan at a maximum power condition. An expensive dynamometer is commonly used for performance test of a motor or a reducer. In this paper, a low cost system is developed using a hydraulic pump as a load unit to generate torque instead of a dynamometer. We accurately calculated the required power, the flow meter, and the pressure of the pump, and selected to design and optimize the system at minimal cost. The system also applied another reverse reducer and a gearbox to increase the rotational speed and to reduce the torque from the low speed and high torque target reducer. This allows low-cost systems to be built using inexpensive components. The developed system was able to successfully measure the high torque and the low rotational speed of the target reducer at high temperature.

Development of Speed Reducer Integrated Driving system Apply to Vehicle Window Motor (차량용 윈도우 모터를 적용한 감속기 일체형 구동부 개발)

  • Youm, Kwang-Wook;Ham, Seong-Hun
    • Journal of Power System Engineering
    • /
    • v.20 no.1
    • /
    • pp.57-62
    • /
    • 2016
  • In this study, design the core part of the driving of the robot. The power of the driving is window motor for automobiles obtained by using a method of directly to the motor shaft of the worm gear type. The decelerator consists of a worm gear to receive power from the motor shaft, Helical gear contact to worm gear, a pinion gear to be connected in line with the helical gear, and an output shaft to be engaged to the pinion gear. Drive system by using the power from the motor shaft based on the deceleration gear designed by the gear ratio set by the gear teeth increases the torque.

Characteristic Analysis of Non-Contact Reducer for Electric Vehicles using Arago Disc Effect (아라고 원판 효과를 이용한 전기자동차용 비접촉 감속기의 특성 분석)

  • Goon-Ho Choi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_3
    • /
    • pp.1223-1231
    • /
    • 2023
  • In the case of internal combustion engine vehicles, transmissions are essential for various reasons, such as vehicle starting and speed control. However, in the case of electric vehicles, unlike internal combustion engine vehicles, a transmission is not necessarily required. Of course, considering the efficiency of electric vehicles, a transmission is necessary, but installing the existing transmission as is has the opposite effect due to increased vehicle weight, so it has not been considered so far. In this paper, a non-contact reducer type using the Arago disc effect is proposed rather than a transmission using a conventional gear train, and the aim is to examine whether this can increase the driving efficiency of electric vehicles while minimizing weight. In addition, the effectiveness of the proposed reducer will be verified by manufacturing and testing it.

Analysis of the Relation Between Machining Accuracy of Internal Gear and Noise in Reduction Gears (감속기 내부 기어의 가공정밀도와 구동간 소음의 연관특성에 관한 연구)

  • Park, Sung-Pil;Kim, Woo-Hyung;Chung, Jin-Tai
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.5
    • /
    • pp.537-543
    • /
    • 2012
  • In this study, we experimentally investigate a noise mechanism related to the machining accuracy of the reducer in the driving state. We fabricate a planetary reducer and four types of gears for use in the planetary reducer. We use signal analysis to determine the noise and vibration of the reducer at different motor speeds; the motor speed is increased from 0 rpm to the maximum speed in a stepwise manner. In addition, we obtain the sound level by using a sound level meter. The machining accuracy of gears is evaluated by public organizations, Korea Testing Laboratory (KTL), on the basis of the Japanese Industrial Standard (JIS). We analyze and compare the results with the noise and vibration of the reducer.

Design of Planetary Gear Reducer Driving part to Possible Disadhesion from Electric Wheelchair (전동 휠체어에 탈·부착이 가능한 유성기어 감속기 구동부 설계)

  • Youm, Kwang-Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.9-13
    • /
    • 2022
  • Electric wheelchairs, the output from the motor is mainly applied to a speed reducer using a power transmission device such as a belt or a chain. However, although a speed reducer using a belt or chain is a simple device, it occupies a lot of space and has a space limitation, so it is not suitable for an electric wheelchair driving part. However, since the speed reducer of the planetary gear type is decelerated on the same axis, the volume can be reduced, so the space constraint is less than that of the belt or chain type reducer. Therefore, in this study, a driving part that can obtain great propulsion with a speed reducer using a planetary gear type was developed through a study on the driving part of a wheelchair that can be switched between manual and electric. Accordingly, the tooth shape of the planetary gear applied to the reducer was designed using the Kisssoft program. In addition, the drive part was designed to be applicable to the existing wheelchair wheels, and the mechanism was optimized for the manual/electric switching principle and operation principle of the drive part. Based on the research contents, the final design and manufacture of the wheelchair reducer drive unit in the form of a planetary gear having one sun gear, two planetary gears and one ring gear was carried out.