• Title/Summary/Keyword: motions of the planets

Search Result 6, Processing Time 0.019 seconds

Factors Affecting Earth Science Problem-Solving Performances of Elementary School Pre-service Teachers: A Study on the Motions of the Moon and the Planets

  • Myeong, Jeon-Ok
    • Journal of the Korean earth science society
    • /
    • v.23 no.2
    • /
    • pp.180-187
    • /
    • 2002
  • The aim of this study was to investigate the factors affecting earth science problem-solving performances of elementary school pre-service teachers. The participants of the study were 81 students attending an elementary school teacher education university. The instruments of the study were paper-and-pencil tests, questionnaires, and interviews. The tests mainly measured the participants' problem solving abilities in the motions of the moon and the planets. Correlation and multiple regression techniques were used for data analysis. The results demonstrated that the pre-service teachers' problem solving abilities were low. Problem-solving performances were affected by the procedural knowledge, the participants' perception of the past earth science performance, self-efficacy, and the prerequisite declarative knowledge. Contrary to our expectation, the spatial visualization ability was not found to be related to the problem-solving performances. Implications of the study are drawn, and suggestions are made for further research.

Reasons for Unsuccessful Earth Science Problem Solving of Pre-service Teachers: A Study on the Motions of the Moon and the Planets (예비교사들의 지구과학 문제 해결 실패 요인: 달과 행성의 운동을 중심으로)

  • Myeong, Jeon-Ok
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.339-349
    • /
    • 2001
  • The aim of this study is to explore effective teaching strategies through an investigation of the problem-solving abilities and reasons for the unsuccessful problem solving of pre-service teachers. The participants of the study were 60 pre-service teachers who were expected to teach earth science in elementary school (40) and secondary school (20). The participants had taken a course in astronomy before they took part in the present study. The instruments for the study were a paper-and-pencil test and interviews. The results demonstrated that the pre-service teachers' abilities to solve problems were low. The pre-service teachers of the elementary school were inferior to those of the secondary school in their problem solving abilities. The causes for the unsuccessful problem solving were identified as follows: (1) lack of prerequisite knowledge to understand the motions of the moon and the planets, (2) failure to represent problems based on solution principles, (3) failure to apply the knowledge acquired in one setting to another, different setting, (4) frames of reference the frameworks for everyday life situation and for earth science problem situation, and (5) rote-memorization of facts rather than understanding the cause-and-effect relationships. The above causes for unsuccessful problem solving seemed to be related to the characteristics of novice problem solvers in general and of the tasks about the motions of the moon and the planets. Suggestions are made to enhance pre-service teachers' problem solving abilities based on the result of the study.

  • PDF

The Changes of Preservice and Inservice Elementary School Teachers' Concepts of the Solar System Based upon Their Exposure to the Earth Motion Centric Solar System Model (지구운동 중심 태양계 실험 모형이 초등 예비교사와 초등학교 교사의 천문개념 변화에 미치는 효과)

  • Chae, Dong-Hyun
    • Journal of The Korean Association For Science Education
    • /
    • v.24 no.5
    • /
    • pp.886-901
    • /
    • 2004
  • The purpose of this study was to document the changes in astronomical concepts for preservice and inservice elementary school teachers after being presented with the newly devised Earth Motions Centric Solar System Model. The subjects of the study were 31 preservice and 30 inservice elementary schools teachers in the Jeonbuk Province. First, the author investigated the naive theories of the subjects, and then, compared that data to the data obtained after their exposure to the model. The total number of items on the instrument for this study was 10. These items included questions about the motion of interior planets, the phases and sizes of interior planets, and the motion of exterior planets and comets. After analyzing the answers to the items before the experiment, the author was able to confirm the existence of the naive theories regarding astronomical phenomena. Also, after the experiment, the author was able to observe the conceptual change in thought of the preservice and inservice elementary school teachers. Results showed that learning through the new model had positive effects on the preservice and inservice elementary school teachers' conceptualization of the interior planets' motion, phases and sizes, and the exterior planets' motion.

STABILITY OF ASTEROID MOTIONS

  • KOZAI YOSHIHIDE
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.351-354
    • /
    • 1996
  • In this paper it is explained how most of asteroids can avoid very close approach to Jupiter, to the earth for earth orbit crossing asteroids, and to Neptune for Kuiper-belt asteroids by mechanisms which work also for Neptune-Pluto system. In fact the mutual distance of the planets cannot become very small as the critical argument librates around $180^{\circ}$ because of 2:3 mean motion resonance and the argument of perihelion of Pluto librates around $90^{\circ}$. And it is found that among nearly 40 Kuiper-belt asteroids discovered in recent years $40\%$ have orbits similar to Pluto. For main-belt asteroids the distribution with respect to the semi-major axes has peculiar characteristics and the author tries to explain how their peaks and gaps are created. It is also found that $30\%$ of 80 earth orbit crossing asteroids which have minimum perihelion distances less than 1.04AU have no chance to collide with the earth. Still $30\%$ of them have a few probability to collide with the earth as they have dynamical characteristics of short-periodic comets.

  • PDF

MICROLENS MASSES FROM 1-D PARALLAXES AND HELIOCENTRIC PROPER MOTIONS

  • Gould, Andrew
    • Journal of The Korean Astronomical Society
    • /
    • v.47 no.6
    • /
    • pp.215-218
    • /
    • 2014
  • One-dimensional (1-D) microlens parallaxes can be combined with heliocentric lens-source relative proper motion measurements to derive the lens mass and distance, as suggested by Ghosh et al. (2004). Here I present the first mathematical anlysis of this procedure, which I show can be represented as a quadratic equation. Hence, it is formally subject to a two-fold degeneracy. I show that this degeneracy can be broken in many cases using the relatively crude 2-D parallax information that is often available for microlensing events. I also develop an explicit formula for the region of parameter space where it is more difficult to break this degeneracy. Although no mass/distance measurements have yet been made using this technique, it is likely to become quite common over the next decade.

ANALYSIS OF KOREAN HISTORICAL COMET RECORDS (한국의 고대 혜성 기록 분석)

  • Park, So-Yeon;Chae, Jong-Chul
    • Publications of The Korean Astronomical Society
    • /
    • v.22 no.4
    • /
    • pp.151-168
    • /
    • 2007
  • We have analyzed the comet records in the Korean history books: Samguksagi, Goryeosa, and Joseonwangjosillok. For a comparison, the Chinese and Japanese comet records collected by Kronk (1999) have also been analyzed. Power spectrum of the time series of the comet records is used to find periodic comets. Statistically significant periodicities in the power spectrum are detected at the periods of 38-40 years, about 76 years, and 300-400 years for all Korean, Chinese, and Japanese comet records. We have also calculated the past orbits of some comets that have been recently observed, to check whether or not they were recorded in the history books. We use a multistep method to numerically integrate the comet's orbital motion backward in time to 51 B.C. The gravitational force due to the Sun and the nine planets, non-gravitational force, and the relativistic effects have been considered. Comparison of comet's perihelion passage time and the position on the sky with the historical records shows that the comet Halley were recorded at every passage in both Goryeo and Joseon periods. The orbital motion of the comet Pons-Brooks has also been compared with the Korean records. For the comet Tempel-Tuttle, Swift-Tuttle, and Ikeya-Zhang, we have compared our calculation of the orbital motions with those of the previous studies.