Browse > Article
http://dx.doi.org/10.5303/JKAS.2014.47.6.215

MICROLENS MASSES FROM 1-D PARALLAXES AND HELIOCENTRIC PROPER MOTIONS  

Gould, Andrew (Department of Astronomy, Ohio State University)
Publication Information
Journal of The Korean Astronomical Society / v.47, no.6, 2014 , pp. 215-218 More about this Journal
Abstract
One-dimensional (1-D) microlens parallaxes can be combined with heliocentric lens-source relative proper motion measurements to derive the lens mass and distance, as suggested by Ghosh et al. (2004). Here I present the first mathematical anlysis of this procedure, which I show can be represented as a quadratic equation. Hence, it is formally subject to a two-fold degeneracy. I show that this degeneracy can be broken in many cases using the relatively crude 2-D parallax information that is often available for microlensing events. I also develop an explicit formula for the region of parameter space where it is more difficult to break this degeneracy. Although no mass/distance measurements have yet been made using this technique, it is likely to become quite common over the next decade.
Keywords
astrometry; gravitational microlensing; planets; stars: fundamental parameters (masses);
Citations & Related Records
연도 인용수 순위
  • Reference
1 Gould, A., Miralda-Escude, J., & Bahcall, J. N. 1994, Microlensing Events: Thin Disk, Thick Disk, or Halo?, ApJ, 423, L105   DOI
2 Henderson, C. B., Park, H., Sumi, T., et al. 2014, Candidate Gravitational Microlensing Events for Future Direct Lens Imaging, ApJ, 794, 71   DOI
3 Janczak, J., Fukui, A., Dong, S., et al. 2010, Sub-Saturn Planet MOA-2008-BLG-310Lb: Likely to be in the Galactic Bulge, ApJ, 711, 731   DOI
4 Jiang, G., DePoy, D. L., Gal-Yam, A., et al. 2004, OGLE-2003-BLG-238: Microlensing Mass Estimate of an Iso- lated Star, ApJ, 617, 1307   DOI
5 Muraki, Y., Han, C., Bennett, D. P., et al. 2011, Discovery and Mass Measurements of a Cold, 10 Earth Mass Planet and Its Host Star, ApJ, 741, 22   DOI
6 Nataf, D. M., Gould, A., Fouque, P., et al. 2013, Reddening and Extinction toward the Galactic Bulge from OGLE-III: The Inner Milky Way's RV 2.5 Extinction Curve, ApJ, 769, 88   DOI
7 Park B.-G., DePoy, D. L., Gaudi, B. S., et al. 2004, MOA 2003-BLG-37: A Bulge Jerk-Parallax Microlens Degeneracy, ApJ, 609, 166   DOI
8 Batista, V., Beaulieu, J.-P., Gould, A., Bennett, D. P., Yee, J. C., Fukui, A., Sumi, T., & Udalski, A. 2014, MOA-2011-BLG-293Lb: First Microlensing Planet Possibly in the Habitable Zone, ApJ, 780, 54   DOI
9 Ghosh, H., DePoy, D. L., Gal-Yam, A., et al. 2004, Potential Direct Single-Star Mass Measurement, ApJ, 615, 450   DOI
10 Alcock, C., Allsman, R. A., Alves, D. R., et al. 2001, Direct Detection of a Microlens in the Milky Way, Nature, 414, 617   DOI   ScienceOn
11 Dong, S., Gould, A., Udalski, A., et al. 2009, OGLE-2005-BLG-071Lb, the Most Massive M Dwarf Planetary Companion?, ApJ, 695, 970   DOI
12 Drake, A. J., Cook, K. H., & Keller, S. C. 2004, Resolving the Nature of the Large Magellanic Cloud Microlensing Event MACHO-LMC-5, ApJ, 607, L29   DOI
13 Gould, A. 2000, A Natural Formalism for Microlensing, ApJ, 542, 785   DOI
14 Gould, A. 2004, Resolution of the MACHO-LMC-5 Puzzle: The Jerk-Parallax Microlens Degeneracy, ApJ, 606, 319   DOI
15 Gould, A., Bennett, D. P., & Alves, D. R. 2004, The Mass of the MACHO-LMC-5 Lens Star, ApJ, 614, 404   DOI
16 Gould, A., & Horne, K. 2013, Kepler-Like Multi-Plexing for Mass Production of Microlens Parallaxes, ApJL, 779, L28   DOI