• Title/Summary/Keyword: motion-based

Search Result 7,033, Processing Time 0.041 seconds

Design and Strength Analysis of a Mast and Mounting Part of Dummy Gun for Multi-Mission Unmanned Surface Vehicle (복합임무 무인수상정의 마스트 및 특수임무장비 장착부 설계 및 강도해석)

  • Son, Juwon;Kim, Donghee;Choi, Byungwoong;Lee, Youngjin
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.11
    • /
    • pp.51-59
    • /
    • 2018
  • The Multi-Mission Unmanned Surface Vehicle(MMUSV), which is manufactured using glass Fiber Reinforced Plastic(FRP) material, is designed to perform a surveillance and reconnaissance on the sea. Various navigation sensors, such as RADAR, RIDAR, camera, are mounted on a mast to perform an autonomous navigation. And a dummy gun is mounted on the deck of the MMUSV for a target tracking and disposal. It is necessary to analyze a strength for structures mounted on the deck because the MMUSV performs missions under a severe sea state. In this paper, a strength analysis of the mast structure is performed on static loads and lateral external loads to verify an adequacy of the designed mast through a series of simulations. Based on the results of captive model tests, a strength analysis for a heave motion of the mast structure is conducted using a simulation tool. Also a simulation and fatigue test for a mounting part between the MMUSV and the dummy gun are performed using a specimen. The simulation and test results are represented that a structure of the mast and mounting part of the dummy gun are appropriately designed.he impact amount are performed through simulation and experiments.

Ellen Olenska as the objet petit a and the Relationship Between Man and Woman in Edith Wharton's The Age of Innocence (대상 소타자로 작용하는 엘런 올렌스카 - 『순수의 시대』에 나타난 남녀관계)

  • Lee, Misun
    • Cross-Cultural Studies
    • /
    • v.53
    • /
    • pp.73-102
    • /
    • 2018
  • The purpose of this study was to explain, using Jacques Lacan's theory of desire, how Ellen Olenska functions as the object petit a in her relationship with Newland Archer and to connect the impossibility of Newland and Ellen's love with the impossibility of desire, in Edith Wharton's The Age of Innocence. In New York society in the 1870s, the unpleasant truth was avoided, personal opinions were excluded, no room for imagination existed, and other-ness was expelled. In that society, Newland realized that true love and true emotions were lacking in his life. For Newland, Ellen was the gap in New York society and the object that could fill that gap. Ellen functioned as the object petit a. But the romance between Newland and Ellen was forbidden in New York society, where everything was dominated by strict social codes, and especially because Newland was engaged to Ellen's cousin, May Welland. Ellen became inaccessible to Newland and this set Newland's desire for Ellen in motion. He idealized Ellen as the objet petit a, based on the fantasy that she would fill the void in his life. However, at every critical moment, Newland delayed unification with Ellen by resorting to social codes. His actions betrayed that the goal of his desire was not the fulfillment, but the reproduction of desire, with its circular movement. His decision not to see Ellen in Paris again at the end of the novel can be interpreted as Newland's effort to maintain Ellen as the inaccessible object, objet petit a, forever. It is this impossibility of desire that the romance of Newland and Ellen is predicated upon. Another purpose of this study was to expand this impossibility of desire to the relationship between man and woman and to interpret The Age of Innocence as a story showing the characteristics of the relationship between the sexes. The relationship between Newland and Ellen shows that there is no harmonious relationship between the sexes and that woman exists only as a fantasy object, objet petit a for man.

Evaluation of the Degenerative Changes of the Distal Intervertebral Discs after Internal Fixation Surgery in Adolescent Idiopathic Scoliosis

  • Dehnokhalaji, Morteza;Golbakhsh, Mohammad Reza;Siavashi, Babak;Talebian, Parham;Javidmehr, Sina;Bozorgmanesh, Mohammadreza
    • Asian Spine Journal
    • /
    • v.12 no.6
    • /
    • pp.1060-1068
    • /
    • 2018
  • Study Design: Retrospective study. Purpose: Lumbar intervertebral disc degeneration is an important cause of low back pain. Overview of Literature: Spinal fusion is often reported to have a good course for adolescent idiopathic scoliosis (AIS). However, many studies have reported that adjacent segment degeneration is accelerated after lumbar spinal fusion. Radiography is a simple method used to evaluate the orientation of the vertebral column. magnetic resonance imaging (MRI) is the method most often used to specifically evaluate intervertebral disc degeneration. The Pfirrmann classification is a well-known method used to evaluate degenerative lumbar disease. After spinal fusion, an increase in stress, excess mobility, increased intra-disc pressure, and posterior displacement of the axis of motion have been observed in the adjacent segments. Methods: we retrospectively secured and analyzed the data of 15 patients (four boys and 11 girls) with AIS who underwent a spinal fusion surgery. We studied the full-length view of the spine (anterior-posterior and lateral) from the X-ray and MRI obtained from all patients before surgery. Postoperatively, another full-length spine X-ray and lumbosacral MRI were obtained from all participants. Then, pelvic tilt, sacral slope, curve correction, and fused and free segments before and after surgery were calculated based on X-ray studies. MRI images were used to estimate the degree to which intervertebral discs were degenerated using Pfirrmann grading system. Pfirrmann grade before and after surgery were compared with Wilcoxon signed rank test. While analyzing the contribution of potential risk factors for the post-spinal fusion Pfirrmann grade of disc degeneration, we used generalized linear models with robust standard error estimates to account for intraclass correlation that may have been present between discs of the same patient. Results: The mean age of the participant was 14 years, and the mean curvature before and after surgery were 67.8 and 23.8, respectively (p<0.05). During the median follow-up of 5 years, the mean degree of the disc degeneration significantly increased in all patients after surgery (p<0.05) with a Pfirrmann grade of 1 and 2.8 in the L2-L3 before and after surgery, respectively. The corresponding figures at L3-L4, L4-L5, and L5-S1 levels were 1.28 and 2.43, 1.07 and 2.35, and 1 and 2.33, respectively. The lower was the number of free discs below the fusion level, the higher was the Pfirrmann grade of degeneration (p<0.001). Conversely, the higher was the number of the discs fused together, the higher was the Pfirrmann grade. Conclusions: we observed that the disc degeneration aggravated after spinal fusion for scoliosis. While the degree of degeneration as measured by Pfirrmann grade was directly correlated by the number of fused segments, it was negatively correlated with the number of discs that remained free below the lowermost level of the fusion.

Analysis of Lower Extremity Injury Mechanism Centered on Frontal Collision in Occupant Motor Vehicle Crashes (정면충돌 시 차량 탑승자의 하지 손상기전에 대한 분석)

  • Lee, Hee Young;Lee, Jung Hun;Jeon, Hyeok Jin;Kim, Ho Jung;Kim, Sang Chul;Youn, Young Han;Lee, Kang Hyun
    • Journal of Auto-vehicle Safety Association
    • /
    • v.10 no.4
    • /
    • pp.7-12
    • /
    • 2018
  • Injury mechanisms of lower extremity injuries in motor vehicle accidents are focused on fractures, sprains, and contusions. The purpose of this study is to evaluate the analysis of lower extremity injury mechanism in occupant motor vehicle accident by using Hospital Information System (HIS) and reconstruction program, based on the materials related to motor vehicle accidents. Among patients who visited the emergency department of Wonju Severance Christian Hospital due to motor vehicle accidents from August 2012 to February 2014, we collected data on patients with agreement for taking the damaged vehicle's photos. After obtaining the verbal consent from the patient, we asked about the cause of the accident, information on vehicle involved in the accident, and the location of car repair shop. The photos of the damaged vehicle were taken on the basis of front, rear, left side and right side. Damage to the vehicle was presented using the CDC code by analytical study of photo-images of the damaged vehicle, and a trauma score was used for medical examination of the severity of the patient's injury. Among the 1,699 patients due to motor vehicle crashes, 88 (5.2%) received a diagnosis of lower extremity fracture and 141 (8.3%) were the severe who had ISS over 15. Nevertheless during 19 months for research, it was difficult to build up in-depth database about motor vehicle crashes. It has a limitation on collecting data because not only the system for constructing database about motor vehicle crash is not organized but also the process for demanding materials is not available due to prevention of personal information. For accurate analysis of the relationship between occupant injury and vehicle damage in motor vehicle crashes, build-up of an in-depth database through carrying out various policies for motor vehicle crashes is necessary for sure.

A Study on Scientific Concepts and Teaching and Learning Methods in the Activities of the Nuri Curriculum Teacher Guidebooks for Ages 3-5 in Accordance with Themes (생활주제를 중심으로 본 3-5세 연령별 누리과정 교사용지도서 활동의 과학개념 및 교수학습방법 분석)

  • Choi, Hye Yoon
    • Korean Journal of Child Education & Care
    • /
    • v.18 no.4
    • /
    • pp.65-89
    • /
    • 2018
  • Objective: The purpose of this study is to analyze the science concepts and teaching and learning methods presented in the science education-related activities of the Nuri Curriculum teacher guidebooks for ages 3-5. Methods: The research data included 772 activities related to science education in the teachers' guidebook. The analysis of science concepts was based on physical science (force and motion, physical structure, electricity and magnetism, light and shadow, sound properties), chemistry (material properties, material reaction), life science (organizational structure, growth and change, heredity and evolution, animal plant and human relationships), earth science (earth system interaction, earth system structure, and universe), engineering (designed world, engineering design, engineering, technology and society) and ecology (environment preservation). Teaching and learning methods were analyzed according to the types of small and large group activities and of free play activities. Results: Science concepts were mainly presented in the fields of engineering, chemistry, and life science commonly among children aged 3-5, whereas the concepts of physical science were lowly presented in all ages. Science concepts appeared mainly in the daily subjects of 'animal plant and nature', 'life tools', 'environment and life', and 'spring, summer, autumn and winter'. As the teaching and learning method, free paly activities (science area, free outdoor selection activity, math and manipulative activity) were mostly used for the ages of 3 and 4, and small and large group activities (cooking, story sharing, music activity) were for the age of 5. Conclusion/Implications: It is necessary to select the level of science area and concept that can be taught according to the age of children and the timing of the teaching.

Numerical Study on Towing Stability of LNG Bunkering Barge in Calm Water (LNG 벙커링 바지의 정수 중 예인안정성에 관한 수치연구)

  • Oh, Seung-Hoon;Jung, Dong-Ho;Jung, Jae-Hwan;Hwang, Sung-Chul;Cho, Seok-Kyu;Sung, Hong-Gun
    • Journal of Navigation and Port Research
    • /
    • v.43 no.3
    • /
    • pp.143-152
    • /
    • 2019
  • In this paper, the towing stability of the LNG bunker barge was estimated. Currently, LNG bunkering barge is being developed for the bunkering of LNG (Liquefied Natural Gas), an eco-friendly energy source. Since the LNG bunkering barge assumes the form of a towed ship connected to the tow line, the towing stability of the LNG bunker barge is crucial f not only for the safety of the LNG bunker barge but also the neighboring sailing vessels. In the initial stages, a numerical code for towing simulation was developed to estimate the towing stability of the LNG bunkering barge. The MMG (Maneuvering Mathematical modeling Group) model was applied to the equations of motion while the empirical formula was applied to the maneuvering coefficients for use in the initial design stage. To validate the developed numerical code, it was compared with published calculation and model test results. Towing simulations were done based on the changing skeg area and the towing position of the LNG bunkering barge using the developed numerical codes. As a result, the suitability of the designed stern skeg area was confirmed.

3-Dimensional Numerical Analysis of Air Flow inside OWC Type WEC Equipped with Channel of Seawater Exchange and Wave Characteristics around Its Structure (in Case of Regular Waves) (해수소통구를 구비한 진동수주형 파력발전구조물 내에서 공기흐름과 구조물 주변에서 파랑특성에 관한 3차원수치해석(규칙파의 경우))

  • Lee, Kwang Ho;Lee, Jun Hyeong;Jeong, Ik Han;Kim, Do Sam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.242-252
    • /
    • 2018
  • It is well known that an Oscillating Water Column Wave Energy Converter (OWC-WEC) is one of the most efficient wave absorber equipment. This device transforms the vertical motion of water column in the air chamber into the air flow velocity and produces electricity from the driving force of turbine as represented by the Wells turbine. Therefore, in order to obtain high electric energy, it is necessary to amplify the water surface vibration by inducing resonance of the piston mode in the water surface fluctuation in the air chamber. In this study, a new type of OWC-WEC with a seawater channel is used, and the wave deformation by the structure, water surface fluctuation in the air chamber, air outflow velocity from the nozzle and seawater flow velocity in the seawater channel are evaluated by numerical analysis in detail. The numerical analysis model uses open CFD code OLAFLOW model based on multi-phase analysis technique of Navier-Stokes solver. To validate model, numerical results and existing experimental results are compared and discussed. It is revealed within the scope of this study that the air flow velocity at nozzle increases as the Ursell number becomes larger, and the air velocity that flows out from the inside of the air chamber is larger than the velocity of incoming air into the air chamber.

A Case Study on Earthquake-induced Deformation of Quay Wall and Backfill in Pohang by 2D-Effective Stress Analysis (2차원 유효응력 해석에 의한 지진시 포항 안벽구조물의 변형 사례 분석)

  • Kim, Seungjong;Hwang, Woong-Ki;Kim, Tae-Hyung;Kang, Gi-Chun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.7
    • /
    • pp.15-27
    • /
    • 2019
  • The purpose of this study is to investigate the mechanism about damages occurring at quay wall and backfill in Youngilman Port during Pohang earthquake (M5.4) on November 15, 2017. In the field investigation, the horizontal displacement of the caisson occurred between 5 cm and 15 cm, and the settlement at backfill occurred higher than 10 cm. 2D-effective Stress Analysis was performed to clarify the mechanism for the damage. The input earthquake motion used acceleration ($3.25m/s^2$) measured at bedrock of Pohang habor. Based on a numerical analysis, it was found that the effective stress decreased due to the increase of excess pore pressure in the backfill ground and the horizontal displacement of the caisson occurred by about 14 cm, and the settlement occurred by about 3 cm. In backfill, the settlements occurred between 6 cm and 9 cm. This is similar to field investigation results. Also, it was found that the backfill soil was close to the Mohr-Coulomb failure line due to the cyclic loading from the effective stress path and the stress-strain behavior. It may be related to decreasing of bearing capacity induced by the reduction of effective stress caused by the increase of the excess pore water pressure.

Propagation of Tsunamis Generated by Seabed Motion with Time-History and Spatial-Distribution: An Analytical Approach (시간이력 및 공간분포를 지닌 지반운동에 의한 지진해일 발생 및 전파: 해석적 접근)

  • Jung, Taehwa;Son, Sangyoung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.30 no.6
    • /
    • pp.263-269
    • /
    • 2018
  • Changes in water depth caused by underwater earthquakes and landslides cause sea surface undulations, which in turn propagate to the coast and result in significant damage as wave heights normally increase due to the wave shoaling process. Various types of numerical models have been developed to simulate the generation and propagation of tsunami waves. Most of tsunami models determine the initial surface of the water based on the assumption that the movement of the seabed is immediately and identically transmitted to the sea surface. However, this approach does not take into account the characteristics of underwater earthquakes that occur with time history and spatial variation. Thus, such an incomplete description on the initial generation of tsunami waves is totally reflected in the error during the simulation. In this study, the analytical solution proposed by Hammack (1973) was applied in the tsunami model in order to simulate the generation of initial water surface elevation by the change of water depth with time history and its propagation. The developed solution is expected to identify the relationship among various type of seabed motions, initial surface undulations, and wave speeds of elevated water surfaces.

FBX Format Animation Generation System Combined with Joint Estimation Network using RGB Images (RGB 이미지를 이용한 관절 추정 네트워크와 결합된 FBX 형식 애니메이션 생성 시스템)

  • Lee, Yujin;Kim, Sangjoon;Park, Gooman
    • Journal of Broadcast Engineering
    • /
    • v.26 no.5
    • /
    • pp.519-532
    • /
    • 2021
  • Recently, in various fields such as games, movies, and animation, content that uses motion capture to build body models and create characters to express in 3D space is increasing. Studies are underway to generate animations using RGB-D cameras to compensate for problems such as the cost of cinematography in how to place joints by attaching markers, but the problem of pose estimation accuracy or equipment cost still exists. Therefore, in this paper, we propose a system that inputs RGB images into a joint estimation network and converts the results into 3D data to create FBX format animations in order to reduce the equipment cost required for animation creation and increase joint estimation accuracy. First, the two-dimensional joint is estimated for the RGB image, and the three-dimensional coordinates of the joint are estimated using this value. The result is converted to a quaternion, rotated, and an animation in FBX format is created. To measure the accuracy of the proposed method, the system operation was verified by comparing the error between the animation generated based on the 3D position of the marker by attaching a marker to the body and the animation generated by the proposed system.