• Title/Summary/Keyword: motion vector field

Search Result 85, Processing Time 0.027 seconds

Animation construction and application example by the post-processing of PIV data (PIV데이터의 post-processing에 의한 애니메이션 제작 및 적용예)

  • Kim, M.Y.;Choi, J.W.;Lee, H.;Lee, Y.H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.655-660
    • /
    • 2000
  • Animation technique from the PIV database is particularly emphasized to give macroscopic and quantitative description of complex flow fields. This paper shows animation construction and application example for the post-processing of PIV data. As examples, first case is a pitching airfoil immersed in tree surface water circulating tunnel. Second case is a wake of a model-ship. Third case of PIV data is a large scale surface flow field. Obtained images are processed in time sequence by PIV exclusive routines where an efficient and reliable cross correlation algorithm is included for vector identification. All. animation Jobs are implemented completely on single personal computer environment. Compressed digital images are obtained initially by Motion-JPEG board and various An files are finally obtained through graphic processes.

  • PDF

Design of PMSM Control System Using Sensorless control (Sensorless 제어를 이용한 PMSM 모터 제어기 설계)

  • 김대웅;박성준;이영진;원태현;박한웅;정태욱;백승면;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.108-108
    • /
    • 2000
  • This application study presents a solution to control a Permanent Magnet Synchronous Motor without sensors. The use of this system yields enhanced operations, fewer system components, lower system cost, energy efficient control system design and increased efficiency. The control method presented is field oriented control (FOC). The sinusoidal voltage waveforms are generated by the power module using the space vector modulation technique. A practical solution is described and results are given in this application Study. The performance of a Sensorless architecture allows an intelligent approach to reduce the complete system costs of digital motion control applications using cheaper electrical motors without sensors. This paper deals with an overview of sensorless solutions in digital motor control applications whereby the focus will be the new Controller without sensors and its applications.

Electromagnetic Fields Due to Moving Sources in Anisotripic Plasma (이방성 Plasma 내에서 운동중인 Source에 의한 전자계)

  • Kim, Young-Cho
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.23 no.2
    • /
    • pp.149-169
    • /
    • 1986
  • Fundamentals of electrodynamics of moving sources with constant velocity in an anisotripic plasma when the do magnetic field and the relative motion are oriented in arbitrary directions are presented. The well-known Minkowski's relations are generalized to accomodate anisotropic and dispersive media, and relativistic transformation formulae of constitutive parameters are derived and expanded into polynomials of the speed ratio \ulcornerto increase the utility of the formulae. The helmholtz wave equation of electromagnetic fields is generalized to the media charactrized by tensor parameters, and is solved in operator form. Also the solution of wave equation is expressed as a porcuct of the inverse of the wave operator matrix and the source function vector, and the inverse of the wave operator matrix is presented in an explicit form. The equations and formulae derived in this paper are all general, and can be reduced to known and proven results upon imposing the restriction called for by specific situations.

  • PDF

Orbit Determination of KOMPSAT-1 and Cryosat-2 Satellites Using Optical Wide-field Patrol Network (OWL-Net) Data with Batch Least Squares Filter

  • Lee, Eunji;Park, Sang-Young;Shin, Bumjoon;Cho, Sungki;Choi, Eun-Jung;Jo, Junghyun;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.34 no.1
    • /
    • pp.19-30
    • /
    • 2017
  • The optical wide-field patrol network (OWL-Net) is a Korean optical surveillance system that tracks and monitors domestic satellites. In this study, a batch least squares algorithm was developed for optical measurements and verified by Monte Carlo simulation and covariance analysis. Potential error sources of OWL-Net, such as noise, bias, and clock errors, were analyzed. There is a linear relation between the estimation accuracy and the noise level, and the accuracy significantly depends on the declination bias. In addition, the time-tagging error significantly degrades the observation accuracy, while the time-synchronization offset corresponds to the orbital motion. The Cartesian state vector and measurement bias were determined using the OWL-Net tracking data of the KOMPSAT-1 and Cryosat-2 satellites. The comparison with known orbital information based on two-line elements (TLE) and the consolidated prediction format (CPF) shows that the orbit determination accuracy is similar to that of TLE. Furthermore, the precision and accuracy of OWL-Net observation data were determined to be tens of arcsec and sub-degree level, respectively.

Obstacle Avoidance of Unmanned Surface Vehicle based on 3D Lidar for VFH Algorithm (무인수상정의 장애물 회피를 위한 3차원 라이다 기반 VFH 알고리즘 연구)

  • Weon, Ihn-Sik;Lee, Soon-Geul;Ryu, Jae-Kwan
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.945-953
    • /
    • 2018
  • In this paper, we use 3-D LIDAR for obstacle detection and avoidance maneuver for autonomous unmanned operation. It is aimed to avoid obstacle avoidance in unmanned water under marine condition using only single sensor. 3D lidar uses Quanergy's M8 sensor to collect surrounding obstacle data and includes layer information and intensity information in obstacle information. The collected data is converted into a three-dimensional Cartesian coordinate system, which is then mapped to a two-dimensional coordinate system. The data including the obstacle information converted into the two-dimensional coordinate system includes noise data on the water surface. So, basically, the noise data generated regularly is defined by defining a hypothetical region of interest based on the assumption of unmanned water. The noise data generated thereafter are set to a threshold value in the histogram data calculated by the Vector Field Histogram, And the noise data is removed in proportion to the amount of noise. Using the removed data, the relative object was searched according to the unmanned averaging motion, and the density map of the data was made while keeping one cell on the virtual grid map. A polar histogram was generated for the generated obstacle map, and the avoidance direction was selected using the boundary value.

Analysis of MPEG-4 Encoder for Object-based Video (실시간 객체기반 비디오 서비스를 위한 MPEG-4 Encoder 분석)

  • Kim Min Hoon;Jang Euee Seon;Lee Sun young;Moon Seok ju
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.1
    • /
    • pp.13-20
    • /
    • 2004
  • In this paper, we have analyzed the current MPEG-4 video encoding tools and proposed efcient coding techniques that reduce the complexity of the encoder. Until recently, encoder optimization without shape coding has been a major concern in video for wire/wireless low bit rate coding services. Recently, we found out that the computational complexity of MPEG-4 shape coding plays a very important role in the object-based coding through experiments. We have made an experiment whether we could get optimized object-based coding method through successfully combining latest optimized texture coding techniques with our proposed optimized shape coding techniques. In texture coding, we applied the MVFAST method for motion estimation. We chose not to use IVOPF(Intelligent VOP Formation) but to use TRB(Tightest Rectangular Boundary) for positioning VOP and, finally, to eliminate the spiral search of shape motion estimation to reduce the complexity in shape coding. As a result of experiment, our proposed scheme achieved improved time complexity over the existing reference software by $57.3\%$ and over the optimized method on which only shape coding was applied by $48.7\%$, respectively.

Effect of Passive Temperature Therapy of the Femoral Muscles on the Countermovement Jump Performance

  • Lee, Jintaek;Panday, Siddhartha Bikram;Byun, Kyungseok;Lee, Jusung;Hwang, Jinny;Moon, Jeheon
    • Korean Journal of Applied Biomechanics
    • /
    • v.29 no.4
    • /
    • pp.227-235
    • /
    • 2019
  • Objective: The purpose of this study was to evaluate the effect of passive-acute temperature therapy of the femoral muscle and dynamic warm-up on the countermovement jump performance. Method: Twenty male track and field athletes from national team underwent three treatments applied on the femoral muscles; cold temperature treatment, thermal treatment and dynamic warm-up. The variables extracted at 2 time points (pre-measurement and post measurement) were the temperature of the left and right femoral muscle, displacement & velocity of centre of mass, peak power out, range of motion and moment & power of the knee joint. Results: There was a statistically significant difference in the temperature of the femoral muscle according to measurement time which was high in the order of thermal treatment, dynamic treatment and cold treatment. The jump height was the highest in the dynamic warm-up with no statistically significant difference for the range of motion of the knee joint. The peak power out at dynamic warm-up and the power of the knee joint were statistically significant according to the treatment and measurement time. Conclusion: Local cold and thermal treatment of femoral muscles at ambient temperature did not improve jump performance, while dynamic warm-up was considered to be effective for maintaining the performance of the activities that require strong muscular power.

Navigation Trajectory Control of Security Robots to Restrict Access to Potential Falling Accident Areas for the Elderly (노약자의 낙상가능지역 진입방지를 위한 보안로봇의 주행경로제어)

  • Jin, Taeseok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.6
    • /
    • pp.497-502
    • /
    • 2015
  • One of the goals in the field of mobile robotics is the development of personal service robots for the elderly which behave in populated environments. In this paper, we describe a security robot system and ongoing research results that minimize the risk of the elderly and the infirm to access an area to enter restricted areas with high potential for falls, such as stairs, steps, and wet floors. The proposed robot system surveys a potential falling area with an equipped laser scanner sensor. When it detects walking in elderly or infirm patients who in restricted areas, the robot calculates the velocity vector, plans its own path to forestall the patient in order to prevent them from heading to the restricted area and starts to move along the estimated trajectory. The walking human is assumed to be a point-object and projected onto a scanning plane to form a geometrical constraint equation that provides position data of the human based on the kinematics of the mobile robot. While moving, the robot continues these processes in order to adapt to the changing situation. After arriving at an opposite position to the human's walking direction, the robot advises them to change course. The simulation and experimental results of estimating and tracking of the human in the wrong direction with the mobile robot are presented.

Simulation of a Pulsating Air Pocket in a Sloshing Tank Using Unified Conservation Laws and HCIB Method (통합보존식 해석과 HCIB 법을 이용한 슬로싱 탱크 내부 갇힌 공기에 의한 압력 진동 모사)

  • Shin, Sangmook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.5
    • /
    • pp.271-280
    • /
    • 2021
  • The code developed using a pressure-based method for unified conservation laws of incompressible/compressible fluids is expanded to handle moving or deforming body boundaries using the hybrid Cartesian/immersed boundary method. An instantaneous pressure field is calculated from a pressure Poisson equation for the whole fluid domain, including the compressible gas region. The polytropic gas is assumed for the compressible fluid so that the energy equation is decoupled. Immersed boundary nodes are identified based on edges crossing body boundaries. The velocity vector is reconstructed at the immersed boundary node using an interpolation along the assigned local normal line. The developed code is validated by comparing the time histories of pressure and wave elevation for sloshing in a rectangular and a membrane-type tank. The validated code is applied to simulate air cushion effects in a rectangular tank under sway motion. Time variations of pressure fields are analyzed in detail as the air pocket pulsates. It is shown that the contraction and expansion of the air pocket dominate the pressure loads on the wall of the tank. The present results are in good agreement with other experimental and computational results for the amplitude and the decay of the pressure oscillations measured at the pressure gauges.

Accelerometry of Upper Extremity During Activities of Daily Living in Healthy Adults (정상인에서 일상생활활동 수행시 상지의 가속도 분석)

  • Kim, Tae-Hoon;Park, Kyung-Hee
    • The Journal of Korean society of community based occupational therapy
    • /
    • v.4 no.1
    • /
    • pp.23-31
    • /
    • 2014
  • Objective : The objectives of this study were to compare the variables from Fitmeter accelerometer with them from CMS-70P(Zebris Medizintechnik Gmbh, Germany) and to suggest the availability the accelerometer in the field of occupational therapy. Methods : Twenty participants performed calling, drinking water, washing face and spooning and we measured Sum of Single Vector Magnitude(SSVM) and range of motion(ROM) on the wrist and elbow joints. Results :With respect to the wrist and elbow joints, SSVM and ROM differed significantly according to the task(calling, drinking water, washing face and spooning)(p<.001; p<.001; p<.001; p<.001). As for the wrist joint, SSVM and ROM did not show the significant correlation(p>.05) but as for the elbow joint, SSVM and ROM did show the significant correlation according to the task(p<.01; p<.001; p<.01; p<.05). With regard to the SVM-difference of wrist and elbow joints, calling and washing showed the significant difference (p<.001; p<.05) but drinking and spooning did not show the significant difference(p>.05; p>.05). Conclusion : We suggest that Fitmeter accelerometer would be use to record the kinematic variables during performance of ADL and it can compensate the function of CMS-70P as for the elbow joint than the wrist joint.

  • PDF