• Title/Summary/Keyword: motion strategy

Search Result 363, Processing Time 0.024 seconds

CrabBot: A Milli-Scale Crab-Inspired Crawling Robot using Double Four-bar Mechanism (CrabBot: 이중 4절 링크를 활용한 꽃게 모사 8족 주행 로봇)

  • Cha, Eun-Yeop;Jung, Sun-Pil;Jung, Gwang-Pil
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.245-250
    • /
    • 2019
  • Milli-scale crawling robots have been widely studied due to their maneuverability in confined spaces. For successful crawling, the crawling robots basically required to fulfill alternating gait with elliptical foot trajectory. The alternating gait with elliptical foot trajectory normally generates both forward and upward motion. The upward motion makes the aerial phase and during the aerial phase, the forward motion enables the crawling robots to proceed. This simultaneous forward and upward motion finally results in fast crawling speed. In this paper, we propose a novel alternating mechanism to make a crab-inspired eight-legged crawling robot. The key design strategy is an alternating mechanism based on double four-bar linkages. Crab-like robots normally employs gear-chain drive to make the opposite phase between neighboring legs. To use the gear-chain drive to this milli-scale robot system, however, is not easy because of heavy weight and mechanism complexity. To solve the issue, the double-four bar linkages has been invented to generate the oaring motion for transmitting the equal motion in the opposite phase. Thanks to the proposed mechanism, the robot crawls just like the real crab with the crawling speed of 0.57 m/s.

Path coordinator by the modified genetic algorithm

  • Chung, C.H.;Lee, K.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1939-1943
    • /
    • 1991
  • Path planning is an important task for optimal motion of a robot in structured or unstructured environment. The goal of this paper is to plan the shortest collision-free path in 3D, when a robot is navigated to pick up some tools or to repair some parts from various locations. To accomplish the goal of this paper, the Path Coordinator is proposed to have the capabilities of an obstacle avoidance strategy[3] and a traveling salesman problem strategy(TSP)[23]. The obstacle avoidance strategy is to plan the shortest collision-free path between each pair of n locations in 2D or in 3D. The TSP strategy is to compute a minimal system cost of a tour that is defined as a closed path navigating each location exactly once. The TSP strategy can be implemented by the Neural Network. The obstacle avoidance strategy in 2D can be implemented by the VGraph Algorithm. However, the VGraph Algorithm is not useful in 3D, because it can't compute the global optimality in 3D. Thus, the Path Coordinator is proposed to solve this problem, having the capabilities of selecting the optimal edges by the modified Genetic Algorithm[21] and computing the optimal nodes along the optimal edges by the Recursive Compensation Algorithm[5].

  • PDF

Recursive compensation algorithm application to the optimal edge selection

  • Chung, C.H.;Lee, K.S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.79-84
    • /
    • 1992
  • Path planning is an important task for optimal motion of a robot in structured or unstructured environment. The goal of this paper is to plan the optimal collision-free path in 3D, when a robot is navigated to pick up some tools or to repair some parts from various locations. To accomplish the goal, the Path Coordinator is proposed to have the capabilities of an obstacle avoidance strategy and a traveling salesman problem strategy (TSP). The obstacle avoidance strategy is to plan the shortest collision-free path between each pair of n locations in 2D or in 3D. The TSP strategy is to compute a minimal system cost of a tour that is defined as a closed path navigating each location exactly once. The TSP strategy can be implemented by the Hopfield Network. The obstacle avoidance strategy in 2D can be implemented by the VGraph Algorithm. However, the VGraph Algorithm is not useful in 3D, because it can't compute the global optimality in 3D. Thus, the Path Coordinator is used to solve this problem, having the capabilities of selecting the optimal edges by the modified Genetic Algorithm and computing the optimal nodes along the optimal edges by the Recursive Compensation Algorithm.

  • PDF

A Classification of Sitting Strategies based on Driving Posture Analysis

  • Park, Jangwoon;Choi, Younggeun;Lee, Baekhee;Jung, Kihyo;Sah, Sungjin;You, Heecheon
    • Journal of the Ergonomics Society of Korea
    • /
    • v.33 no.2
    • /
    • pp.87-96
    • /
    • 2014
  • Objective: The present study is intended to objectively classify upper- & lower-body sitting strategies and identify the effects of gender and OPL type on the sitting strategies. Background: A sitting strategy which statistically represents comfortable driving posture can be used as a reference posture of a humanoid in virtual design and evaluation of a driver's seat. Although previous research has classified sitting strategies for driving postures in various occupant package layout (OPL) types, the existing classification methods are not objective and the factors affecting sitting strategies have not been identified. Method: Forty drivers' preferred driving postures in three different OPL types (coupe, sedan, and SUV) were measured by a motion capture system. Next, the measured driving postures were classified by K-means cluster method. Results: Sitting strategies of upper-body were classified as erect (33%), slouched (41%), and reclined (26%) postures, and those of lower-body were classified as knee bent (42%), knee extended (32%), and upper-leg lifted (26%) postures. Significant differences at ${\alpha}$ = 0.05 in the upper-body sitting strategy by gender and lower-body sitting strategy by OPL type were found. Application: Both the classified sitting strategies and the identified factors would be of use in ergonomic seat design and evaluation.

Effects of Resistance Exercise using Elastic Band on Range of Motion, Function and Shoulder Pain among Patients with Rotator Cuff Repair (탄성밴드를 이용한 저항운동이 회전근개봉합술 환자의 견관절가동범위와 기능 및 통증에 미치는 효과)

  • Sim, Jae Ok
    • Korean Journal of Adult Nursing
    • /
    • v.28 no.5
    • /
    • pp.491-500
    • /
    • 2016
  • Purpose: The purpose of this study was to examine the effect of resistive exercise using an elastic band on range of motion, function and shoulder pain. Methods: Forty two subjects who had rotator cuff surgery were assigned either to a treatment or a comparison group, twenty one each. Following a six week period after surgery those in the treatment group participated in resistant exercise using an elastic band for four weeks. The subjects in the comparison group did not participate in the exercise program. The goniometer measured range of motion, a modified tool measured function, and a self report numerical rating scale measured pain. The data were analyzed using $x^2$ test, Fisher's exact, t-test and the Mann-Whitney Test. Results: Although not statistically significant, there was a trend that more subjects in the treatment group had increased range of motion. There was a statistically significance among the treatment group in terms of increased function (p=.015). Further the treatment group reported less pain that those in the comparison group (p<.001). Conclusion: The findings support that resistance exercise is an effective strategy for patients with rotator cuff repair.

A Video Sequence Coding Using Dynamic Selection of Unrestricted Motion Vector Mode in H.263 (H.263의 비제한 움직임 벡터 모드의 동적 선택을 이용한 영상 부호화)

  • 박성한;박성태
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.8
    • /
    • pp.1075-1088
    • /
    • 2001
  • In this paper, we propose a method for dynamic selection of unrestricted motion vector(UMV) or default prediction mode(DPM) in H.263 bit stream. For this, we use the error of compensated image and the magnitude of motion vector. In the proposed strategy, the UMV mode is dynamically applied in a frame according to average magnitude of motion vector and error of compensated image. This scheme has improved the quality of image compared to the fixed mode UMV or DPM only. Number of searching points are greatly reduced when comparing to UMV The proposed method is more profitable to long video sequences having camera movement locally.

  • PDF

Significant Motion-Based Adaptive Sampling Module for Mobile Sensing Framework

  • Muthohar, Muhammad Fiqri;Nugraha, I Gde Dharma;Choi, Deokjai
    • Journal of Information Processing Systems
    • /
    • v.14 no.4
    • /
    • pp.948-960
    • /
    • 2018
  • Many mobile sensing frameworks have been developed to help researcher doing their mobile sensing research. However, energy consumption is still an issue in the mobile sensing research, and the existing frameworks do not provide enough solution for solving the issue. We have surveyed several mobile sensing frameworks and carefully chose one framework to improve. We have designed an adaptive sampling module for a mobile sensing framework to help solve the energy consumption issue. However, in this study, we limit our design to an adaptive sampling module for the location and motion sensors. In our adaptive sampling module, we utilize the significant motion sensor to help the adaptive sampling. We experimented with two sampling strategies that utilized the significant motion sensor to achieve low-power consumption during the continuous sampling. The first strategy is to utilize the sensor naively only while the second one is to add the duty cycle to the naive approach. We show that both strategies achieve low energy consumption, but the one that is combined with the duty cycle achieves better result.

Driving of Inverted Pendulum Robot Using Wheel Rolling Motion (바퀴구름운동을 고려한 역진자 로봇의 주행)

  • Lee, Jun-Ho;Park, Chi-Sung;Hwang, Jong-Myung;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.2
    • /
    • pp.110-119
    • /
    • 2010
  • This paper aims to add the autonomous driving capability to the inverted pendulum system which maintains the inverted pendulum upright stably. For the autonomous driving from the starting position to the goal position, the motion control algorithm is proposed based on the dynamics of the inverted pendulum robot. To derive the dynamic model of the inverted pendulum robot, a three dimensional robot coordinate is defined and the velocity jacobian is newly derived. With the analysis of the wheel rolling motion, the dynamics of inverted pendulum robot are derived and used for the motion control algorithm. To maintain the balance of the inverted pendulum, the autonomous driving strategy is derived step by step considering the acceleration, constant velocity and deceleration states simultaneously. The driving experiments of inverted pendulum robot are performed while maintaining the balance of the inverted pendulum. For reading the positions of the inverted pendulum and wheels, only the encoders are utilized to make the system cheap and reliable. Even though the derived dynamics works for the slanted surface, the experiments are carried out in the standardized flat ground using the inverted pendulum robot in this paper. The experimental data for the wheel rolling and inverted pendulum motions are demonstrated for the straight line motion from a start position to the goal position.

A Video Sequence Coding Using Dynamic Selection of Unrestricted Motion Vector Mode in H.263 (H.263의 비제한 움직임 벡터 모드의 동적 선택을 이용한 영상 부호화)

  • 박성한;박성태
    • Journal of the Korea Computer Industry Society
    • /
    • v.2 no.7
    • /
    • pp.997-1014
    • /
    • 2001
  • In this paper, we propose a method for dynamic selection of unrestricted motion vector(UMV) or default prediction mode(DPM) in H.263 bit stream. For this, we use the error of compensated image and the magnitude of motion vector. In the proposed strategy, the UMV mode is dynamically applied in a frame according to average magnitude of motion vector and error of compensated image. This scheme has improved the quality of image compared to the fixed mode UMV or DPM only. Number of searching points are greatly reduced when comparing to UMV. The Proposed method is more profitable to long video sequences having camera movement locally.

  • PDF

Design Strategy for the Implementation of Cooperative Group Games in Motion Based Arcade Game System

  • Joh, Yun-Sook
    • International Journal of Contents
    • /
    • v.7 no.4
    • /
    • pp.10-18
    • /
    • 2011
  • Cooperative Group Games (CGG) emphasize participation, challenges and fun by cooperation among group members rather than competition. CGGs have been proven to be an efficient education method that teaches the value of cultivating cooperation skills, discipline, and sense of public order for tackling problems together through various types of interactions. When integrated with computer game technology, the general classic CGG can be reborn with new educational and entertaining aspects. To combine the joy of physical movement of group games and the richness of computer game contents, a motion based arcade CGG has been developed in this study, based on the original ideas and structures of classic off-line CGGs. While implementing the classic game concepts in arcade environment, various design attributes have been considered and applied, which were supposed to promote cooperative game play. Overall, the process of the implementation and test results of our four CGGs suggest several design strategies for effective arcade CGGs.