• Title/Summary/Keyword: motion stage

Search Result 694, Processing Time 0.031 seconds

A Study on the Motion Mechanism of Multi-Axis Ultra Precision Stage for Optical Element Alignment (광소자 정렬용 극초정밀 다축 스테이지의 구동 메커니즘에 관한 연구)

  • Jeong Sang-hwa;Kim Gwang-ho;Cha Kyoung-rae;Lee Kyoung-hyoung;Song Suk
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.1
    • /
    • pp.8-16
    • /
    • 2006
  • The communication through optical fiber is taking an important role of the expansion of communication network with excellent transmitting rate and quality. As the optical communication is introduced to the backbone network at first and becomes a general communication method of network, the demand of kernel parts of optical communication such as PLC(Planar Light Circuit), Coupler, and WDM(Wavelength Division Multiplexing) element increases. The alignment and the attachment technology are very important in the fabrication of optical elements. In this paper, the driving mechanism of ultra precision stage is studied with the aim of optimal design of stage. The travel and the resolution of stage are investigated. The hysteresis of the stage is generated because of PZT actuator. The hysteresis and the inverse hysteresis are modeled in X, Y, and Z-axis motion. The input data of desired displacement of the stage according to input voltage is obtained from the inverse hysteresis equation. In the result of experiments with the input data, the errors due to hysteresis are well compensated.

A Two-Axis Ultra-precision Stage Using Flexure-type Parallel Linear Guide Mechanism (플렉셔 구조의 병렬형 선형 안내기구를 이용한 2 축 초정밀 스테이지)

  • Choi Kee-Bong
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.1 s.178
    • /
    • pp.129-135
    • /
    • 2006
  • In this study, a two-axis ultra-precision stage driven by piezoelectric elements is presented. The stage has a flexure-type parallel linear guide mechanism consisting of quad-symmetric simple parallel linear springs and quad-symmetric double compound linear springs. While the simple parallel linear springs guide the linear motion of a moving plate in the stage, the double compound linear springs follow the motion of the simple parallel linear spring as well as compensate the parasitic motions caused by the simple parallel linear springs. The linear springs are designed by rectangular beam type flexures that are deformed by bending deflection rather than axial extension, because the axial extension is smaller than the bending deflection at the same force. The designed guide mechanism is analyzed by finite element method(FEM). Then two-axis parallel linear stage is implemented by the linear guide mechanism combined with piezoelectric elements and capacitance type displacement sensors. It is shown that the manufactured ultra-precision stage achieves 3 nm of resolution in x- and y-axis within 30 ${\mu}m$ of operating range.

A Study on The Motion Charateristic of Ultra Precision Multi-Axis Stage for Optical Element Alignment (광소자 정렬용 극초정밀 다축 위치 조정장치의 운동특성에 관한 연구)

  • Jeong S.H.;Cha K.R.;Kim H.U.;Choi S.B.;Kim G.H.;Park J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1219-1222
    • /
    • 2005
  • As the optical communication is introduced to the backbone network at first and becomes a general communication method of network, the demand of kernel parts of optical communication such as PLC(Planar Light Circuit), Coupler, and WDM(Wavelength Division Multiplexing) element increases. The alignment and the attachment technology are very important in the fabrication of optical elements. In this paper, the driving mechanism of ultra precision stage is studied with the aim of optimal design of stage. The travel and the resolution of stage are investigated. The hysteresis of the stage is generated because of PZT actuator. The hysteresis and the inverse hysteresis are modeled in X, Y, and Z-axis motion. The input data of desired displacement to the stage according to input voltage is obtained from the inverse hysteresis equation. In the result of experiments with the input data, the errors due to hysteresis are well compensated.

  • PDF

Development of Thin and Parallel XYθ Alignment Stage (박형 병렬구조 XYθ 정렬 스테이지 개발)

  • Kang, Dong-Bae;Ahn, Jung-Hwan;Son, Seong-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.1
    • /
    • pp.74-79
    • /
    • 2011
  • Alignment systems with multi-axis motions are applied to determine vertical arrangement of multilayer assembly such as LCD, PDP, and MLCC. This study reports the development of XY${\theta}$ alignment stage which is designed as thin-type structure and parallel actuations. The thin-type parallel XY${\theta}$ alignment stage is maintained below $1{\mu}m$ in repeatability error. The squareness and straightness also allow precise motion for the alignment by the developed stage. The measured error is ${\pm}6.25{\mu}m$ in the alignment experiment by the vision system on the parallel XY${\theta}$ alignment stage.

A Study on the Motion Characteristics of Ultra Precision Optical Element Alignment Stage (초정밀 광소자 정렬 스테이지의 구동 특성에 관한 연구)

  • Jeong Sanghwa;Cha Kyoungrae;Kim Hyunuk;Choi Sukbong;Kim Gwangho;Park Juneho
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.81-86
    • /
    • 2005
  • As the optical communication is introduced to the backbone network at first and becomes a general communication method of network, the demand of kernel parts of optical communication such as PLC(Planar Light Circuit), Coupler, and WDM(Wavelength Division Multiplexing) element increases. The alignment and the attachment technology are very important in the fabrication of optical elements. In this paper, the driving mechanism of ultra precision stage is studied with the aim of optimal design of stage. The travel and the resolution of stage are investigated. The hysteresis of the stage is generated because of PZT actuator. The hysteresis and the inverse hysteresis are modeled in X, Y, and Z-axis motion. The input data of desired displacement to the stage according to input voltage is obtained from the inverse hysteresis equation. In the result of experiments with the input data, the errors due to hysteresis are well compensated.

  • PDF

A case study on the costume making process of stop motion animation characters (스톱모션 애니메이션 캐릭터 의상제작과정에 관한 사례 연구)

  • Kim, Ki Hoon;Suh, Ji Sung
    • The Research Journal of the Costume Culture
    • /
    • v.20 no.5
    • /
    • pp.655-663
    • /
    • 2012
  • Due to increased interest in character costumes, the field of animation character costume design is gradually developing into a specialized domain. The costume-making process for animation characters presents many differences from the costume-making process for regular apparel. However, there remains insufficient research on the actual process of making the character costumes used in stop motion videos both in Korea and abroad. The purpose of this study is to establish a costume design process for animation characters. Furthermore, this study presents a case study on the costume planning and making process for 3D stop motion animation characters. The character costume-making process was segmentalized into the following stages: character analysis stage, character modeling stage, and character costume making stage. In the character analysis stage, the investigator analyzed the character's movements, designed the character images, and analyzed the movements and motions of the animation characters. After completing character modeling, this study proposed a method for making the character costume. The style of the character costume was designed, and the structural design reflected the position and size of joints as well as the angle of movements. The patterns of the character costume were produced through dimensional tailoring after measuring the body size of the character. Afterward, the costume was completed after passing through the fitting and revision stages. The clothing material was selected to fit the colors and feelings shown in the illustration. To complete the costume after comparing it with the initial illustration, it was revised based on the assessment of its volume and overall atmosphere.

Mechanism and Control of Reaction Force Compensation of XY Linear Motion Stage System (XY 선형 모션 스테이지 시스템의 반발력 보상 기구와 제어)

  • Cho, Kyu-Jung;Choi, Dong-Soo;Ahn, Hyeong-Joon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.6
    • /
    • pp.599-607
    • /
    • 2011
  • In this paper, a reaction-force compensation system for an XY linear motion stage, without an additional external isolation structure or extra motors, is developed. This system consists of a movable magnet track, a spring, a dummy weight, and a dedicated sensor module that measures the relative positions of the movable magnet track with respect to the motor coil. The reaction force compensation system is modeled, and simulations are carried out to optimize design parameters such as the moving distance of the magnet track, the transmission force, the dummy weight, and the allowed size of the mechanism. An XY linear motion stage is built, incorporating the reaction force compensation system, and the performance of the system is verified experimentally. For acceleration and deceleration values of 10 m/$s^2$, 85% of the reaction force is absorbed by the reaction force compensation system.

LuGre Model-Based Neural Network Friction Compensator in a Linear Motor Stage

  • Horng, Rong-Hwang;Lin, Li-Ren;Lee, An-Chen
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.18-24
    • /
    • 2006
  • This paper proposes a LuGre Model-Based Neural Network (MBNN) friction compensation algorithm for a linear motor stage. For matching the friction phenomena in both the motion-start region and the motion-reverse region, the LuGre dynamic model is employed into the proposed compensation algorithm. After training of the model-based neural network is completed, the estimated friction for compensation is obtained. From the obtained result we find that the new structure gains advantage over the non-friction compensation system on the performance of the compensator in both regions. The proposed compensator is evaluated and compared experimentally with an uncompensated system on a microcomputer controlled linear motor tracking system in the final section of the paper. The experimental results show the improvement on the maximum velocity error and the root mean square tracking error in the motion-start region ranges from 34% to 53% and from 53% to 75% respectively, and in the motion-reverse region from 48% to 65% and from 79% to 90% respectively.

Investigation of Seakeeping Performance of Trawler by the Influence of the Principal Particulars of Ships in the Bering Sea

  • Thi Thanh Diep Nguyen;Hoang Thien Vu;Aeri Cho;Hyeon Kyu Yoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.38 no.2
    • /
    • pp.43-52
    • /
    • 2024
  • Investigating ship motion under real conditions is vital for evaluating the seakeeping performance, particularly in the design process stage. This study examined the influence of the principal particulars of a trawler on its seakeeping performance. The wave conditions in the Bering Sea are investigated using available data. The length-to-beam (L/B) and beam-to-draft (B/T) ratios of the ship are changed by 10% for the numerical simulation. The response amplitude operator (RAO) motion, root mean square (RMS) value and sensitivity analysis are calculated to evaluate the influence of the trawler dimensions on ship motions. The peak RAO motion affected the ship motions noticeably because of the resonance at the natural frequency. The L/B and B/T ratios are important geometric parameters of a ship that significantly influence its RMS motion, particularly in the case of roll and pitch. The change in the B/T ratio has a good seakeeping performance based on a comparison of the roll and pitch with the seakeeping criteria. The present results provide insights into the seakeeping performance of ships due to the influence of the principal dimensions in the design stage.

Kinematical Analysis of Tichonkich Motion in Parallel Bars (평행봉 Tichonkich 동작의 운동학적 분석)

  • Park, Jong-Hoon;Back, Jin-Ho
    • Korean Journal of Applied Biomechanics
    • /
    • v.15 no.3
    • /
    • pp.21-30
    • /
    • 2005
  • The purpose of this study is helps to make full use for perfect performance by grasping the defects of Tichonkich motion performed by athlete CSM For this, the study analyzed kinematical variables through Tichonkich motions performed at the first selection competition(1st trial) and final selection competition(2nd trial) for the dispatch to the 28th Athens Olympic Games using the three-dimensional cinematographical method with a high-speed video camera, and obtained the following results. 1. During Tichonkich motion, the execution time of up swing and the right hand moving to the left bar was shorter in the 2nd trial than the 1st one, while the execution time of down swing, the support of the left bar and the right hand moving to the right bar was longer in the 2nd trial than the 1st trial. 2. The horizontal position of COG in the 2nd trial was -35cm in the 1st stage, 42cm in the 3rd stage and 29cm in the 4th stage, that is, it showed a great swing focused on the circular movement compared to the 1st trial, while the vertical position of COG was -59cm in the 2nd stage, that is, it showed a small swing focused on a up and down movement. Also the 5th stage vertical position was 98cm, and the 6th stage vertical position was 95cm in the 2nd trial which were higher than those of the 1st trial, so it has provided magnificence required in the modern gymnastics. 3. And it was indicated that the horizontal velocity at the down swing phase proceeded forward more rapidly in the 2nd trial than that in the 1st trial, and the reverse ascent made a rapid vertical rise lessening left and right velocity change. And in the 5th stage, the 2nd trial was kept very slower in horizontal, vertical and left and right velocity that in the 1st trial, so it reached a handstand with leisurely movement. 4. In the 2nd trial, shoulder joint of the 1st, 2nd, 3rd stages kept a larger angle than that in the 1st trial, that is, it made a great swing while in the 1st trial, it showed a swing movement dependent on kick movement by the flexion and extension of hip joint. Also in the 2nd trial, the body formed a vertical posture with both hands supporting the left bar and hip joint was kept larger as $198^{\circ}$ and $190^{\circ}$ in the 5th and 6th stage than that in the 1st trial, so it made a handstand with the body uprightly stretched out, and magnificent and stable movement.