• Title/Summary/Keyword: motion simulator

Search Result 384, Processing Time 0.024 seconds

A Study on Development of PC-based Ship Handling Simulator (PC를 이용한 선박 조종 시뮬레이터의 개발에 관한 연구)

  • 손경호;이성욱
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.4 no.2
    • /
    • pp.25-33
    • /
    • 1998
  • This paper deals with PC-based ship handling simulator, which is now widely utilized not only for total assessment of safety in harbour area but also for training purpose. The suitable mathematical model for low advance speed manoeuvre is treated with the effects of current, wind, wave, tug force and water depth. We adopt 3 dimensional graphic technique for perspective representation of relative ship motion. Some graphical panels on the screen are devised for data input/output or ship manoeuvring information. We show the real time simulation of berthing menoeuvre applied to Pusan harbour as an example.

  • PDF

A Study on the Dynamics of Police Motorcycle Simulator (경찰 오토바이 시뮬레이터의 동역학에 관한 연구)

  • Ahn, Dong-Hyuk;Cho, Sung-Hyun;Kim, Hee-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.533-542
    • /
    • 2020
  • In this study, we developed a PC - based motorcycle simulator based on the development technology of the virtual patrol motorcycle training system. In order to get the impression that the motorcycle simulator is operating in a realistic way, it is important to have a reliable signal transmission and operation feeling between the driver and the simulator. In order to achieve this, we developed a system that can apply the sub-systems of the actual vehicle to the motorcycle simulator in order to generate the same operation feeling as the actual vehicle. Based on these results, We have developed a method for generating a feedback queue. Vehicle dynamics simulates real-time vehicle motion by receiving input from a steering wheel, accelerating / decelerating pedal, etc. operated by a driver on a vehicle simulator and transmitting the result to a visual and acoustic system, It is the central element of the simulator to generate. I want to summarize the main requirements of simulation dynamics.

Laboratory investigation of the effects of translation on the near-ground tornado flow field

  • Razavi, Alireza;Sarkar, Partha P.
    • Wind and Structures
    • /
    • v.26 no.3
    • /
    • pp.179-190
    • /
    • 2018
  • Translation of tornadoes is an important feature in replicating the near-ground tornado flow field which has been simulated in previous studies based on Ward-type tornado simulators using relative motion of the ground plane. In this laboratory investigation, effects of translation on the near-ground tornado flow field were studied using the ISU Tornado Simulator that can physically translate over a ground plane. Two translation speeds, 0.15 m/s and 0.50 m/s, that scale up to those corresponding to slowly-moving tornadoes in the field were selected for this study. Compared with the flow field of a stationary tornado, the simulated tornado with translation had an influence on the spatial distribution and magnitude of the horizontal velocities, early reversal of the radial inflow, and expansion of the core radius. Maximum horizontal velocities were observed to occur behind the center of the translating tornado and on the right side of its mean path. An increase in translation speed, resulted in reduction of maximum horizontal velocities at all heights. Comparison of the results with previous studies that used relative motion of the ground plane for simulating translating tornadoes, showed that translation has similar effects on the flow field at smaller radial distances (~2 core radius), but different effects at larger radial distances (~4 core radius). Further, it showed that the effect of translation on velocity profiles is noticeable at and above an elevation of ~0.6 core radius, unlike those in studies based on the relative motion of the ground plane.

An Underwater Simulator Using X3D and a Motion Chair in a Multi-channel Display Room (다채널 디스플레이에서 X3D와 모션체어를 이용한 수중운동체 시뮬레이터)

  • Hur, Pil-Won;Yang, Jeong-Sam;Han, Soon-Hung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.13 no.1
    • /
    • pp.45-57
    • /
    • 2008
  • A submarine good military weapon because of its confidentiality and intimidating power. Therefore, training warfighters how to maneuver submarine is very important. Because submarine is very expensive and has regional and temporal limitations, M&S(Modeling and Simulation) can be a good alternative. However, as the existing M&S systems of submarine generally use expensive commercial software and dedicated hardware, which cause the warfighters to take troubles to visit the secured places, and then to train themselves during limited time slots. Also, many M&S systems have only one-channel display system which reduces the sense of immersiveness. Another problem is that many heterogeneous simulators can hardly be used as an integrated system. To solve these problems, X3D, a platform-independent and open standard graphic file format, is used with the general-purpose PCs. To increase immersiveness, multi-channel display system and a motion chair are used. Finally, HLA/RTI is used to integrate individual components of the simulator. All of these are verified through experiments.

Gait Implementation of Biped Robot for a continuous human-like walking (이족 보행 로봇의 인간과 유사한 지속보행을 위한 걸음새 구현)

  • Jin, Kwang-Ho;Jang, Chung-Ryoul;Koo, Ja-Hyuk;Choi, Sang-Ho;Kim, Jin-Geol
    • Proceedings of the KIEE Conference
    • /
    • 1999.07g
    • /
    • pp.3092-3094
    • /
    • 1999
  • This paper deals with the gait generation of Biped Walking Robot (IWR-III) to have a continuous walking pattern like human. For this, trajectory planning with the consideration of kick action is done in each walking step, and the coordinate transformation is done for simplifying the kinematics. The trunk moves continuously for all walking time and moves toward Z-axis. Balancing motion is acquired by FDM(Finite Difference Method) during the walking. By combining 4-types of pre-defined steps, multi-step walking is done. Using numerical simulator, dynamic analysis and system stability is confirmed. Walking motion is visualized by 3D-Graphic simulator. As a result, the motion of balancing joints can be reduced by the trunk ahead effect during kick action, and impactless smooth walking is implemented by the experiment.

  • PDF

Development of the Precise Multi-Position Alignment Method using a Pitch Motion (피치운동을 이용한 정밀 다위치 정렬기법 개발)

  • Lee, Jung-Shin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.708-715
    • /
    • 2010
  • In Strapdown Inertial Navigation System, alignment accuracy is the most important factor to determine the performance of navigation. However by an existing self-alignment method, it takes a long time to acquire the alignment accuracy that we want. So, to attain the desired alignment accuracy in as little as $\bigcirc$ minutes, we have developed the precise multi-position alignment method. In this paper, it is proposed a inertial measurement matching transfer alignment method among alignment methods to minimize the alignment error in a short time. It is based on a mixed velocity-DCM matching method be suitable to the operating environment of vertical launching system. The compensation methods to reduce misalign error, especially azimuth angle error incurred by measurement time-delay error and body flexure error are analyzed and evaluated with simulation. This simulation results are finally confirmed by experimentations using FMS(Flight Motion Simulator) in Lab and the integration test to follow the fire control mission.

Development of Universal Sports Simulator Fusing 5 Senses (범용 오감 융합형 스포츠 시뮬레이터의 개발)

  • Lee, Young-Dae;Lee, Won-Sik;Kang, Jeong-Jin
    • The Journal of the Convergence on Culture Technology
    • /
    • v.1 no.1
    • /
    • pp.73-77
    • /
    • 2015
  • Existing sports simulators on the market focus on the motion of platform or reality expression using basic visual contents, and are limited to entertainment products. Therefore, the stimulus on 5 senses is not good enough to be applied on high virtual reality. Moreover, there are not enough professional contents to be applied to an educational sports simulator. In this paper, we developed a sport platform by separating the multi axis based common platform module and the sports application module. We designed the common platform which has 4 degrees of freedom such as surge, sway, heave and yaw motion. This platform has the purpose of stabilizing motion and minimizing interference. The changeable sport module which is attached to the common module has 2 degrees of freedom such as roll and pitch, so that it can be applied to the various fields of 2 degrees of freedom virtual reality sports such as horse riding and yacht.

A study on design of a fuzzy controller and a simulator for development of controller for reducing vibration in overhead crane (천정 크레인의 진동 저감을 위한 퍼지제어기 및 제어기 개발용 시뮬레이터 설계에 관한 연구)

  • Jeong, kyung-Chae;Hong, Jin-Cheol;Bae, Jin-Ho;Lee, Dal-Hae;Lee, Suck-Gyu;Lee, Hai-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.96-101
    • /
    • 1996
  • In this paper, a simulator is designed along with S/W package for crane controllers. Due to trolley's acceleration or deceleration, cranes inherently cause swing motion of the objects in transporting heavy objects. This swing not only deteriorates the crane handling safety but also increases the processing time. To overcome these drawbacks, the fuzzy rule-based simulator is developed with inhibitory swing at final action. The computer simulation shows that the swing at initial and final positions is removed fast with small position error. The proposed simulator can be used for handling object stabley and the study of effectiveness in unmanned operation of cranes.

  • PDF

Implementation of Horse Gait and Riding Aids for Horseback Riding Robot Simulator HRB-1 (승마 로봇 시뮬레이터 HRB-1을 위한 말의 보행 및 부조의 구현)

  • Park, Yong-Sik;Seo, Kap-Ho;Oh, Seung-Sub;Park, Sung-Ho;Suh, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.181-187
    • /
    • 2012
  • Horse riding is widely recognized as a valuable form of education, exercise and therapy. But, the injuries observed in horse riding range from very minor injuries to fatalities. In order to reduce these injuries, the effective horseback riding simulator is required. In this paper, we proposed the implementation method of horse gait and riding aids for horseback riding robot simulator HRB-1. For implementation of horse gait to robot simulator, we gathered and modified real motion data of horse. We obtained two main frequencies of each gait by frequency analysis, and then simple sinusoidal functions are acquired by genetic algorithm. In addition, we developed riding aids system including hands, leg, and seat aids. With the help of a developed robotic system, beginners can learn the skill of real horse riding without the risk of injury.

Development of a Cardiovascular Simulator with Cardiovascular Characteristics (혈관계의 특성이 반영된 심혈관계 시뮬레이터의 개발)

  • Lee, Ju-Yeon;Shin, Sang-Hoon
    • The Journal of the Society of Korean Medicine Diagnostics
    • /
    • v.16 no.3
    • /
    • pp.33-40
    • /
    • 2012
  • Objectives: Existing cardiovascular simulators are used to evaluate artificial organs such as artificial hearts, prosthetic valves, and artificial blood vessels, and pulses are typically triggered using artificial hearts. However, the forms of pulse waves vary according to the location of arteries, and for precise assessment of artificial blood vessels, the development of simulators that generate diverse pressure pulse waves is necessary. This study developed a novel cardiovascular simulator that generates different forms of pulse waves. Methods: This simulator consists of a stepping motor, a slider-crank mechanism that transforms the rotation movement of a motor into the straight-line motion of a piston, a piston that generates pulsatile flows, a water tank that supplies fluids, an elastic tube made of silicon, and a device that adjusts the terminal resistance of fluids. Results & Conclusion: This study examined motor rotation and its operation under conditions similar to the physiological conditions of the heart. The simulator developed in this study produced diverse forms of waves, and the generated pressure waves well satisfied physiological conditions.