• Title/Summary/Keyword: motion planning

Search Result 472, Processing Time 0.026 seconds

Algorithm for Autonomous Wall-Following of Wheeled Mobile Robots Using Reference Motion Synthesis and Generation of Hybrid System (하이브리드 시스템의 기준동작 구성과 생성에 의한 차륜형 이동로봇의 자율 벽면-주행 알고리즘)

  • Lim, Mee-Seub;Im, Jun-Hong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.586-593
    • /
    • 2000
  • In this paper we propose a new approach to the autonomous wall-following of wheeled mobile robots using hybrid system reference motion synthesis and generation. The hybrid system approach is in-troduced to the motion control of nonholonomic mobile robots for the indoor navigation problems. In the dis-crete event system the discrete states are defined by the user-defined constraints and the reference mo-tion commands are specified in the abstracted motions. The hybrid control system applied for the non-holonomic mobile robots can combine the motion planning and autonomous navigation with obstacle avoid-ance for the indoor navigation problem. Simulation results show that hybrid system approach is an effective method for the autonomous navigation in indoor environments.

  • PDF

Minimal Turning Path Planning for Cleaning Robots Employing Flow Networks (Flow Network을 이용한 청소로봇의 최소방향전환 경로계획)

  • Nam Sang-Hyun;Moon Seungbin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.9
    • /
    • pp.789-794
    • /
    • 2005
  • This paper describes an algorithm for minimal turning complete coverage Path planning for cleaning robots. This algorithm divides the whole cleaning area by cellular decomposition, and then provides the path planning among the cells employing a flow network. It also provides specific path planning inside each cell guaranteeing the minimal turning of the robots. The minimal turning of the robots is directly related to the faster motion and energy saving. The proposed algorithm is compared with previous approaches in simulation and the result shows the validity of the algorithm.

An Integrated Robot-Trajectory-Planning Scheme for Spray Painting Operations (스프레이 페인팅 작업을 위한 일관화된 로보트 궤적계획법에 관한 연구)

  • Suh, Suk-Hwan;Woo, In-Kee
    • IE interfaces
    • /
    • v.3 no.2
    • /
    • pp.23-38
    • /
    • 1990
  • The use of robots for painting operations is a powerful alternative as a means for automation and quality improvement. A typical method being used for motion planning of the painting robot is to guide the robot along the desired path : the "lead-through" method. Although this method is simple and has been widely used, it has several drawbacks a) The robot cannot be used during the teaching period, b) A human is exposed to a hostile environment, c) The motions taught are, at best, human's skill level. To deal with the above problems, an integrated robot-trajectory planning scheme is presented. The new scheme takes CAD data describing the shape and geometry of the objects, and outputs an optimal trajectory in the sense of coating thickness and painting time. The purpose of this paper is to investigate theoretical backgrounds for such a scheme including geometric modeling, painting mechanics and robot trajectory planning, and develop algorithms for generating spray gun paths and minimum-time robot trajectories. Future study is to implement these algorithms on an workstation to develop an integrated software system ; ATPS(Automatic Trajectory Planning System) for spray painting robots.

  • PDF

Behavior Planning for Humanoid Robot Using Behavior Primitive (행동 프리미티브 기반 휴머노이드 로봇의 행동 계획)

  • Noh, Su-Hee;Kim, Yong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.108-114
    • /
    • 2009
  • In this paper, we presents a behavior planning for humanoid robots using behavior primitive in 3 dimensional workspace. Also, we define behavior primitives that humanoid robot accomplishes various tasks effectively. Humanoid robot obtains information of the outside environment and its inner information from various sensors in complex workspace with various obstacles. We verify our approach on a developed small humanoid robot using embedded vision and sensor system in a experimental environment. The experimental results show that the humanoid robot performs its tasks fast and effectively.

A study on an efficient combination of the manual mode according to trajectory planning (궤도계획에 의한 수동모드의 효율적 배합에 관한 연구)

  • ;長町三生;伊藤宏司
    • Journal of the Ergonomics Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.25-32
    • /
    • 1987
  • The paesent paper deals with obtaining the properly mixed application critaeia for the manual mode, using computer graphic simulation, in order to recover the error effectively occurring in the advanced teleoperator work of man-robot system. In these experiments the error which is occurred during performing the automatic mode is recovered by the manual mode which is combined properly the operation by hyman with the operation by control program. The result shows an improvement availibility of the system by not only establishing an efficient combination of the manual mode according to trajectory planning but also recovering the error effectively. Therefore we suggest that the operation by control program should be applied in macro motion of control and the operation by human in micro motion of control.

  • PDF

Adaptability Improvement of Learning from Demonstration with Particle Swarm Optimization for Motion Planning (운동계획을 위한 입자 군집 최적화를 이용한 시범에 의한 학습의 적응성 향상)

  • Kim, Jeong-Jung;Lee, Ju-Jang
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.19 no.4
    • /
    • pp.167-175
    • /
    • 2016
  • We present a method for improving adaptability of Learning from Demonstration (LfD) strategy by combining the LfD and Particle Swarm Optimization (PSO). A trajectory generated from an LfD is modified with PSO by minimizing a fitness function that considers constraints. Finally, the final trajectory is suitable for a task and adapted for constraints. The effectiveness of the method is shown with a target reaching task with a manipulator in three-dimensional space.

Motion Planning of Bimanual Robot Using Bimanual Task Compatibility (작업 적합도를 이용한 양팔 로봇의 운동 계획)

  • Hwang, Myun-Joong;Chung, Seong-Youb;Lee, Doo-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.7
    • /
    • pp.656-662
    • /
    • 2008
  • A cost-function based on manipulability and compatibility is designed to determine assembly motions of two cooperating manipulators. Assembly motions are planned along the direction maximizing performance indices to improve control performance of the two manipulators. This paper proposes bimanual task compatibility by defining cost functions. The proposed cost functions are applied and compared to the bimanual assembly task. The problem is formulated as a constrained optimization considering assembly constraints, position of the workpieces, and kinematics and redundancy of the bimanual robot. The proposed approach is evaluated with simulation of a peg-in-hole assembly with an L-shaped peg and two 3-dof manipulators.

A Study on the Collision Avoidance of Two Manipulators using Velocity Modifications (속도 변형을 이용한 두 매니퓨레이터의 충돌회피에 대한 연구)

  • Bum-Hee Lee
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.8
    • /
    • pp.563-569
    • /
    • 1988
  • This research presents several velocity modification methods for collision avoidance of two manipulators in a common workspace. Due to the distinct nature of collision avoidance between the two manipulators, a new classification of collision situations is presented and utilized in planning a collision-free path. Concepts of a collision map and velocity modification are applied for realizing collision-free motion planning. An example is shown for velocity modification of a trajectory, which shows the significance of the proposed approaches in collision-free motion planneng of two moving robots.

A Mathematical Approach to Time-Varying Obstacle Avoidance of Robot manipulators (로보트의 시변 장애물 회피를 위한 수학적 접근 방법)

  • 고낙용;이범희;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.7
    • /
    • pp.809-822
    • /
    • 1992
  • A mathematical approach to solving the time-varying obstacle avoidance problem is pursued. The mathematical formulation of the problem is given in robot joint space(JS). View-time concept is used to deal with time-varying obstacles. The view-time is the period in which a time-varying obstacles. The view-time is the period in which a time-varying obstacle is viewed and approximated by an equivalent stationary obstacle. The equivalent stationary obstacle is the volume swept by the time-varying obstacle for the view-time. The swept volume is transformed into the JS obstacle that is the set of JS robot configurations causing the collision between the robot and the swept volume. In JS, the path avoiding the JS obstacle is planned, and a trajectory satisfying the constraints on robot motion planning is planned along the path. This method is applied to the collision-free motion planning of two SCARA robots, and the simulation results are given.

Trajectory Design for Mobile Robot Using Potential Field Method (퍼텐션 필드법을 이용한 모바일 로봇의 경로디자인)

  • Chau, Minh Phuc;Shon, Minhan;Choo, Hyunseung
    • Annual Conference of KIPS
    • /
    • 2013.05a
    • /
    • pp.248-249
    • /
    • 2013
  • This study presents a potential field method for path planning to goal with a mobile robot in unknown environment. The proposed algorithm allows mobile robot to navigate through static obstacles, and find the path in order to reach the target without collision. This algorithm provides the robot with the possibility to move from the initial position to the final position (target). Stage and Player simulator is used to perform the robot motion and implement the potential field algorithm in C/C++ for performance evaluation. Two-dimensional terrain model is used to simulate the ability of robot in motion planning without any collision.