• Title/Summary/Keyword: motion of the moon

Search Result 846, Processing Time 0.029 seconds

Search Range Reduction Algorithm with Motion Vectors of Upper Blocks for HEVC (상위 블록 움직임 벡터를 이용한 HEVC 움직임 예측 탐색 범위 감소 기법)

  • Lee, Kyujoong
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.1
    • /
    • pp.18-25
    • /
    • 2018
  • In High Efficiency Video Coding (HEVC), integer motion estimation (IME) requires a large amount of computational complexity because HEVC adopts the high flexible and hierarchical coding structures. In order to reduce the computational complexity of IME, this paper proposes the search range reduction algorithm, which takes advantage of motion vectors similarity between different layers. It needs only a few modification for HEVC reference software. Based on the experimental results, the proposed algorithm reduces the processing time of IME by 28.1% on average, whereas its the $Bj{\emptyset}ntegaard$ delta bitrate (BD-BR) increase is 0.15% which is negligible.

SOFTWARE DEVELOPMENT OF HIGH-PRECISION EPHEMERIDES OF SOLAR SYSTEM (II) (태양계 행성의 고정확도 위치계산에 과한 연구(II))

  • 신종섭;안영숙;박필호;박은광;박종옥
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.78-89
    • /
    • 1995
  • We solved n-body problem about 9 planets, moon, and 4 minor planets with relativistic effect related to the basic equation of motion of the solar system. Perturbations including flgure potential of the earth and the moon and solid earth tidal effect were considered on this relativistic equation of motion. The orientations employed precession and nutation for the earth, and lunar libration model with Eckert's lunar libration model based on J2000.0 were used for the moon. Finally, we developed heliocentric ecliptic position and velocity of each planet using this software package named the SSEG (Solar System Ephemerides Generator) by long-term (more than 100 years) simulation on CRAY-2S super computer, through testing each subroutine on personal computer and short-time(within 800 dyas) running on SUN3/280 workstation. Epoch of input data JD2440400.5 were adopted in order to compare our results to the data archived from JPL's DE 200 by Standish and Newhall. Above equation of motion was integrated numerically having 1-day step-size interval through 40,000 days (about 110 years long) as total computing interval. We obtained high-precision ephemerides of the planets with maximum error, less $than\pm2\times10^{-8}AU(\approx\pm3km)$ compared with DE200 data (except for mars and moon).

  • PDF

The Development of A Basic Golf Swing Analysis Algorithm using a Motion Analysis System (동작분석 시스템을 이용한 골프 스윙 분석 기초 알고리즘 개발)

  • Seo, Jae-Moon;Lee, Hae-Dong;Lee, Sung-Cheol
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.85-95
    • /
    • 2011
  • Three-dimensional(3D) motion analysis is a useful tool for analyzing sports performance. During the last few decades, advances in motion analysis equipment have enabled us to perform more and more complicated biomechanical analyses. Nevertheless, considering the complexity of biomechanical models and the amount of data recorded from the motion analysis system, subsequent processing of these data is required for event-specific motion analysis. The purpose of this study was to develop a basic golf swing analysis algorithm using a state-of-the-art VICON motion analysis system. The algorithm was developed to facilitate golf swing analysis, with special emphasis on 3D motion analysis and high-speed motion capture, which are not easily available from typical video camera systems. Furthermore, the developed algorithm generates golf swing-specific kinematic and kinetic variables that can easily be used by golfers and coaches who do not have advanced biomechanical knowledge. We provide a basic algorithm to convert massive and complicated VICON data to common golf swing-related variables. Future development is necessary for more practical and efficient golf swing analysis.

An Efficient Motion Vector Coding Algorithm for the Video Sequence with Slow Motion (저속 동영상에 효과적인 움직임 벡터 부호화 알고리듬)

  • Moon Yong ho;Kim Young kuk;Chang Jung hwan;Kim Jae ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.4C
    • /
    • pp.269-275
    • /
    • 2005
  • In this paper, we propose a new efficient motion vector coding algorithm for the video sequence with slow motion. In the proposed algorithm, the amount of motion for a given video sequence is determined by a Skip_rate parameter. The motion difference for slow motion is encoded with a combined codeword which is generated from the conventional codewords. The simulation results show that the proposed algorithm achieves approximately $15\%$ bits gain compared to the conventional methods. Moreover, additional memory and calculations for statistical observation are not required in the proposed algorithm.

De-interlacing Algorithm Using Integral Projection-based Motion Estimation Considering Region Of Interest (관심영역 단위의 적분 프로젝션기반 움직임 추정을 사용한 순차주사화 알고리즘)

  • Kim, Young-Duk;Chang, Joon-Young;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.45 no.3
    • /
    • pp.20-29
    • /
    • 2008
  • In this paper, we propose a do-interlacing algorithm using integral projection-based motion estimation considering Region Of Interest(ROI). The proposed motion estimation method finds the motion of the given ROI accurately with low computational cost. In order to incorporate the motion estimation in do-interlacing, an entire image is first segmented into multiple ROIs according to the temporally predicted block-wise motion types and spatial positions. Then, motion vectors of respective ROIs are obtained by the integral projection method. In this paper, totally five ROIs, one for the global motion and four for the local motions, are made, and therefore, five motion vectors are produced for each field. By using the estimated motion vectors, motion compensation is performed for increasing the vortical resolution of the converted frames. Finally, do-interlaced frames are obtained by effectively combining the results of motion compensation and stable intra-field do-interlacing according to the reliability of motion compensation. Experimental results show that the proposed algorithm provides better image quality than existing algorithms in both subjective and objective measures.

Development and Kinematic Evaluation for Training Method to Strengthen Part Motion of Snatch in Weight Lifting (역도 인상기술 향상을 위한 부분 동작 강화훈련법 개발 및 운동학적 평가)

  • Moon, Young-Jin;Kwon, An-Sook;Lee, Gyee-San
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.2
    • /
    • pp.153-159
    • /
    • 2011
  • The purpose of this study was to develop an innovative training model and method to improve the posture and motion, while pulling up during weight lifting by evaluating the problems of Korean weight lifters performing this motion. To investigate the effectiveness of the new training method substitute members of the Korean national weight lifting team performed both the original pull up technique and new pulling training technique while kinetics and kinematics were recorded. For this study, the first phase of the new training method is more appropriate than the original training with the pull up drop slow deadlift to the knee joint. For the second phase, the new training motion is deemed to be more effective than the current box deadlift motion. Also, this new motion corrects the posture as there is more anterior hip joint motion(about 10 cm) and the knee flexes to about 120 degrees. For the third phase, starting about 10cm above the knee the box snatch high pull up is identified as a more suitable training method. For the forth phase, the box top snatch method is judged to be a more effective training method than the original top snatch training method.

Improvement of Washout Algorithm for Vehicle Driving Simulator Using Vehicle Tilt Data and Its Evaluation (차량 기울기값을 이용한 차량 시a레이터용 워시아웃 알고리즘에 대한 개선 및 평가)

  • Moon, Young-Geun;Kim, Moon-Sik;Kim, Kyung-Dal;Lee, Min-Cheol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.8
    • /
    • pp.823-830
    • /
    • 2009
  • For developing automotive parts and telematics devices the real car test often shows limitation because it needs high cost, much time and has the possibility of the accident. Therefore, a Vehicle Driving Simulator (VDS) instead of the real-car test has been used by some automotive manufactures, research centers, and universities. The VDS is a virtual reality device which makes a human being feel as if one drives a vehicle actually. Unlike actual vehicle, the simulator has limited kinematic workspace and bounded dynamic characteristics. So it is difficult to simulate dynamic motions of a multi-body vehicle model fully. In order to overcome these problems, a washout algorithm which restricts workspace of the simulator within the kinematic limits is needed, and analysis of dynamic characteristics is required also. However, a classical washout algorithm contains several problems such as time delay and generation of wrong motion signal caused by characteristics of filters. Specially, the classical washout algorithm has the simulator sickness when driver hardly turns brakes and accelerates the VDS. In this paper, a new washout algorithm is developed to enhance the motion sensitivity and improve the simulator sickness by using the vehicle tilt signal which is generated in the real time vehicle dynamic model.

Implementation of Integration Module of Vision and Motion Controller using Zynq (Zynq를 이용한 비전 및 모션 컨트롤러 통합모듈 구현)

  • Moon, Yong-Seon;Roh, Sang-Hyun;Lee, Young-Pil
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.159-164
    • /
    • 2013
  • Recently the solution integrated of vision and motion controller which are important element in automatiomn system has been many developed. However typically such a solutions has a many case that integrated vision processing and motion control into network or organized two chip solution on one module. We implement one chip solution integrated into vision and motion controller using Zynq-7000 that is developed recently as extended processing platform. We also apply EtherCAT to motion control that is industrial Ethernet protocol which have compatibility for open standardization Ethernet in order to control of motion because EtherCAT has a secure to realtime control and can treat massive data.

Dynamic Analysis of Space Structure by Using Perturbation Method (섭동법을 이용한 우주 구조물의 동적 운동 해석)

  • Kwak, Moon-K.;Seong, Kwan-Jae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.674-679
    • /
    • 2005
  • This paper is concerned with the application of perturbation method to the dynamic analysis of space structure floating in space. In dealing with the dynamics of space structure, the use of Lagrange's equations of motion in terms of quasi-coordinates were suggested to derive hybrid equations of motion for rigid-body translations and elastic vibrations. The perturbation method is then applied to the hybrid equations of motion along with discretization by means of admissible functions. This process is very tiresome. Recently, a new approach that applies the perturbation method to the Lagrange's equations directly was proposed and applied to the two-dimensional floating structure. In this paper, we propose the application of the perturbation method to the Lagrange's equations of motion in terms of quasi-coordinates. Theoretical derivations show the efficacy of the proposed method.

  • PDF

Dynamic Analysis of Space Structure by Using Perturbation Method (섭동법을 이용한 우주 구조물의 동적 운동 해석)

  • Seong, Kwan-Jae;Kwak, Moon K.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.9 s.102
    • /
    • pp.1030-1036
    • /
    • 2005
  • This paper is concerned with the application of perturbation method to the dynamic analysis of space structure floating in space. In dealing with the dynamics of space structure, the use of Lagrange's equations of motion in terms of quasi-coordinates were suggested to derive hybrid equations of motion for rigid-body translations and elastic vibrations. The perturbation method is then applied to the hybrid equations of motion along with discretization by means of admissible functions. This process is very tiresome. Recently, a new approach that applies the perturbation method to the Lagrange's equations directly was proposed and applied to the two-dimensional floating structure. In this paper. we propose the application of the perturbation method to the Lagrange's equations of motion in terms of quasi-coordinates. Theoretical derivations show the efficacy of the proposed method.