• Title/Summary/Keyword: motion mechanism

Search Result 1,143, Processing Time 0.034 seconds

A Study on Trajectory Characteristics of the Six-Degrees-of-Freedom Fine Motion Mechanism for the Ultra Precision Positioning Decision (초정밀 위치결정을 위한 6자유도미동기구의 궤적 특성에 관한 연구)

  • 김재열;윤성운
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.3
    • /
    • pp.33-39
    • /
    • 1994
  • The purpose of this research is to examine precise linear motion and rotary motion. A six-degrees-of-freedom fine motion mechanism is introduced to drive an object precisely in directions of X, Y and Z-axes and around them : three rectangular linear motion and rotary ones. An experimental mechanism is introduced in which a $70$\times$70$\times$70$\times$(${mm}^3$) cube object is driven by six PZT actuator. The study is to establish the six-degrees-of-freedom fine motion mechanism of linear motion and rotary motion using PZT actuator.

  • PDF

평면 캠-링크 기구의 설계 소프트웨어 개발

  • 양현익;유호윤
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.788-793
    • /
    • 1995
  • For a linkage mechanism deiven by cam, cam profile is the major design factor and is determined by the motion type od cam follower. If a cam mechanism has additional kinematic linkages besides cam and follower then the follower motion should be specified form the motion of end linkage member so that cam would be able to generate the desired end linkage motion. In this paper, a cam-linkage mechanism is constructed with the combinations of modular linkage elements including cam and follower and as a resullt, a planar cam-linkage mechanism design software with the cam profile optimization function is developed and presented.

  • PDF

A Study on Feed Dog Motion of a Lock Stitch Sewing Machine (본봉용 재봉기의 톱니 운동에 관한 연구)

  • 전경진;송창섭;신대영
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.37-47
    • /
    • 1998
  • This study discusses the feed dog feeding mechanism of an industrial lock stitch sewing machine, which is a good example to study a machine kinematics. The feed dog feeding mechanism makes the fabrics directly be fed by an elliptic motion of the feed dog that is moved by a rotation of the top shaft and controlled by the feeding control mechanism. This study makes mathematical expressions of machine's motion in the feed dog feeding mechanism. Thus, the motions of this mechanism are characterized, namely how an elliptic motion of the feed dog is affected by the feeding control mechanism. Therefore, the above mathematical expressions may be a basis for the new design of the feed dog feeding mechanism and may be adapted to analysis. Development of the similar feed dog feeding mechanism can be applied to other type sewing machine.

  • PDF

Implementation of 3D Motion Simulator with Two Degrees of Freedom (2자유도를 갖는 3차원 운동 시뮬레이터 연구)

  • Choi, Myoung-Hwan;Kim, Young-Jin
    • Journal of Industrial Technology
    • /
    • v.21 no.A
    • /
    • pp.81-88
    • /
    • 2001
  • In this work, we have developed a 2 degrees of freedom(DOF) motion simulator that can generate the sensation of motion in a 6 DOF space. The motion base has the DOF of roll and pitch, and the purpose of the motion base is to create the sensation of riding a vehicle in a 3D space by controlling the motion base. The dynamics of the mechanism was analysed and the optimal design of the motion base mechanism has been reached. The prototype motion base mechanism was developed and tested. The multi-axis motion controller(MMC) was used to control the two AC servo meters that drive the roll and pitch motion.

  • PDF

Dimensional Syntheris and Kinematic Analysis of RSCS-SSP Spatial Mechanism with use of the Displacement Matrix Method (변위행렬법을 이용한 RSCS-SSP 공간기구의 치수합성과 운동해석)

  • 강희용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.113-118
    • /
    • 1997
  • This paper presents the dimensional synthesis and kinematic analysis of the RSCS-SSP motion generating spatial mechanism using the displacement matrix method. This type of spatial mechanisms is used for the Mcpherson suspension in small automobiles. It is modeled for the wheel bump/rebound and steering motion. First, the suspension is modeled as a multiloop spatial rigid body guidance mechanism for the two major motions. Then the design equations for SSP, RS, and SC strut links are applied to synthesize an RSCS-SSP for up to three prescribed positions for the steering motiom from the suspension design specification. Thus a RSCS-SSP mechanism which is synthesized is also analyzed for the displacement during the steering motion.

  • PDF

The Research of 2 DOF 3D Motion Simulator (2 DOF 3D 운동 시뮬례이터 실험)

  • 김영진;최명환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.260-260
    • /
    • 2000
  • In this work, we have developed a 2 degree of freedom(DOF) motion simulator that can generate the sensation of motion in a 6 DOF space. The motion base has the DOF of roll and pitch, and the purpose of the motion base is to create the sensation of riding a vehicle in a 3D space by controlling the motion base. The dynamics of the mechanism was analysed and the optimal design of the motion base mechanism has been reached. The prototype motion base mechanism was developed and tested. The multi-axis motion controller(MMC) was used to control the two ac servo motors that drive the roll and pitch motion.

  • PDF

A Study on Ultra Precision Rotational Device Using Smooth Impact Drive Mechanism (스무즈 임팩트 구동 메커니즘을 이용한 초정밀 회전장치에 관한 연구)

  • Lee, Sang-Uk;Jeon, Jong-Up
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.25 no.4
    • /
    • pp.140-147
    • /
    • 2008
  • This paper represents an ultra precision rotational device where the smooth impact drive mechanism (SIDM) is utilized as driving mechanism. Linear motions of piezoelectric elements are converted to the rotational motion of disk by frictional forces generated between the rotational disk and the friction part that is attached to the piezoelectric element. This device was designed to drive the rotational disk using slip-slip motion mechanism instead of stick-slip motion mechanism occurred in conventional impact drive mechanism. Experimental results show that the angular velocity is increased in proportion to the magnitude and frequency of supplied voltage to piezoelectric element and decreased as the preload is increased. In our device, the smooth rotational motion was obtained when the driving frequency has been reached to 500Hz under the driving voltage of 100V.

Kinematic Characteristics of a 4-RRPaRR Type Schönflies Motion Generator (4-RRPaRR구조의 Schönflies Motion Generator 기구학 특성 분석)

  • Kim, Sung-Mok;Yi, Byung-Ju;Kim, Whee-Kuk
    • The Journal of Korea Robotics Society
    • /
    • v.6 no.1
    • /
    • pp.78-85
    • /
    • 2011
  • This article investigates kinematic characteristics of a Sch$\ddot{o}$nflies motion generator which represents a mechanism having translational three Degree-of-Freedom (DOF) and rotational one-DOF motion about a fixed axis. The mechanism consists of the base plate and the moving plate, and four identical limbs connecting them. Each limb employs two revolute joints (RR), one parallelogram (Pa), and two revolute joints (RR) from the base plate to the moving plate. The mechanism is driven by four actuators which are placed on the base plate to minimize dynamic loads. It is shown through simulations that the mechanism can be designed to secure large dexterous workspace and thus has very high potential for actual applications such as haptic devices and high-speed requiring tasks such as pick-and-place operations, riveting, screwing tasks, etc.

A Consecutive Motion and Situation Recognition Mechanism to Detect a Vulnerable Condition Based on Android Smartphone

  • Choi, Hoan-Suk;Lee, Gyu Myoung;Rhee, Woo-Seop
    • International Journal of Contents
    • /
    • v.16 no.3
    • /
    • pp.1-17
    • /
    • 2020
  • Human motion recognition is essential for user-centric services such as surveillance-based security, elderly condition monitoring, exercise tracking, daily calories expend analysis, etc. It is typically based on the movement data analysis such as the acceleration and angular velocity of a target user. The existing motion recognition studies are only intended to measure the basic information (e.g., user's stride, number of steps, speed) or to recognize single motion (e.g., sitting, running, walking). Thus, a new mechanism is required to identify the transition of single motions for assessing a user's consecutive motion more accurately as well as recognizing the user's body and surrounding situations arising from the motion. Thus, in this paper, we collect the human movement data through Android smartphones in real time for five targeting single motions and propose a mechanism to recognize a consecutive motion including transitions among various motions and an occurred situation, with the state transition model to check if a vulnerable (life-threatening) condition, especially for the elderly, has occurred or not. Through implementation and experiments, we demonstrate that the proposed mechanism recognizes a consecutive motion and a user's situation accurately and quickly. As a result of the recognition experiment about mix sequence likened to daily motion, the proposed adoptive weighting method showed 4% (Holding time=15 sec), 88% (30 sec), 6.5% (60 sec) improvements compared to static method.

Development of ultra precision rotational stage using Semi-inchworm driving mechanism with PZT (PZT를 이용한 Semi-inchworm구동기법의 초정밀 회전 스테이지 개발)

  • Yun, Deok-Won;Ahn, Kang-Ho;Han, Chang-Soo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.37-41
    • /
    • 2007
  • Recently PZT is used in ultra precision mechanism field. PZT has a small motion range although it has a high resolution. Many methods, such as inchworm, impact driving, etc., have been applied for the expansion of the motion range.? In this study, the new actuating mechanism for rotational motion with two PZT actuators is proposed. The ultra precision rotational actuator which is made by proposed mechanism is able to operate both coarse and fine motion. The design parameters of the proposed mechanism are considered to improve the performance of the system. The rotational stage which is applied by the proposed mechanism is fabricated. The resolution and velocity for fabricated rotational stage are measured by laser interferometer.

  • PDF