본 논문에서는 우선순위와 문턱치를 가지고 최적 후보의 조기 탐지를 이용한 움직임 추정의 고속 블록 매칭 알고리즘을 제안한다. 전 영역 탐색(full search) 알고리즘의 계산량을 줄이기 위해 많은 고속 움직임 추정 알고리즘이 발표되었지만, 여전히 움직임 추정 성능을 향상시키기 위한 많은 연구가 보고되고 있다. 제안된 알고리즘은 이전 부분 매칭 오류에서 우선순위가 높은 각 후보에 대한 블록 매칭 오류를 계산한다. 제안된 알고리즘은 대부분의 기존 고속 블록 매칭 알고리즘에 추가적으로 적용하여 속도를 높일 수 있다. 그렇게 함으로써 최소 오류 지점을 조기에 찾고 불가능한 후보에 대한 불필요한 계산을 줄임으로써 속도를 높일 수 있다. 제안된 알고리즘은 전 영역 탐색 알고리즘과 동일한 예측 화질을 가지면서 기존의 고속 무손실 탐색 알고리즘보다 적은 계산을 사용한다. 실험결과로서, 제안된 알고리즘은 예측 화질 저하 없이 PDE 및 전 영역 탐색 방법의 계산에 비해 30 ~ 70%까지 줄일 수 있으며, 다른 고속 손실 알고리즘을 사용하면 더욱 감소시키는 것으로 나타났다.
Voice activity detection is very important process that voice activity separated form noisy speech signal for speech enhance. Over the past few years, many studies have been made on voice activity detection, but it has poor performance in low signal to noise ratio environment or fickle noise such as car noise. In this paper, it proposed new voice activity detection algorithm using ensemble variance based on wavelet band entropy and soft thresholding method. We conduct a survey in a lot of signal to noise ratio environment of car noise to evaluate performance of the proposed algorithm and confirmed performance of the proposed algorithm.
International Journal of Fuzzy Logic and Intelligent Systems
/
제12권1호
/
pp.60-65
/
2012
This paper presents a method for occluded object based motion estimation and tracking system in dynamic image sequences using particle filter with 3D reconstruction. A unique characteristic of this study is its ability to cope with partial occlusion based continuous motion estimation using particle filter inspired from the mirror neuron system in human brain. To update a prior knowledge about the shape or motion of objects, firstly, fundamental 3D reconstruction based occlusion tracing method is applied and object landmarks are determined. And optical flow based motion vector is estimated from the movement of the landmarks. When arbitrary partial occlusions are occurred, the continuous motion of the hidden parts of object can be estimated by particle filter with optical flow. The resistance of the resulting estimation to partial occlusions enables the more accurate detection and handling of more severe occlusions.
In this paper, the measurements preprocessing algorithm for the fading of bearing and frequency measurements is proposed, which can improve the performance of BFTMA(Bearing and Frequency Target Motion Analysis). The fading and detection relation between bearing and frequency are rigorously established for measurements preprocessing, and BFTMA can be carried out the estimation of target motion by using measurements preprocessing. Batch estimation with bearing and frequency using the proposed algorithm can be applied to estimate the initial target states despite of the fading of frequency measurement. Simulation results show that BFTMA using the proposed measurements preprocessing has superior estimation performance, compared with batch estimation using only bearing measurements.
In this paper, center detection and motion analysis of a moving object are studied. Kohonen's self-organizing neural network models are used for the moving objects tracking and time delay neural networks are used for dynamic characteristic analysis. Instead of objects brightness, neuron projections by Kohonen Networks are used. The motion of target objects can be analyzed by using the differential neuron image between the two projections. The differential neuron image which is made by two consecutive neuron projections is used for center detection and moving objects tracking. The two differential neuron images which are made by three consecutive neuron projections are used for the moving trajectory estimation. It is possible to distinguish 8 directions of a moving trajectory with two frames and 16 directions with three frames.
본 논문에서는 움직이는 카메라로부터 획득한 연속영상에서 이동물체를 자동으로 검출하고 추적하는 시스템을 제안한다. 제안된 방법은 크게 이동물체 검출과 추적과정으로 나뉘어진다. 이동물체는 BBME(block-based motion estimation)와 DD(double difference)를 통합한 방법을 이용하여 검출된다. 검출된 이동물체는 히스토그램 백 프로젝션을 통하여 분할되며, 히스토그램 인터섹션과 XY-프로젝션을 사용하여 대상물체를 정합하고 추적된다. 본 논문에서는 컴퓨터 모의실험을 통하여 제안된 방법이 움직이는 카메라로부터 획득된 영상에서 이동물체를 검출하고 큰 오차 없이 추적함을 보였다.
In this study, the motion compensating interpolation algorithm is presented. The presented algorithm allows the unblutted reconstruction of omitted frames. It is shown that the Walker & Rao's estimation algorithm using modified displaced frame difference combined with rectangulat adaptive measurement window increases the reliability of the estimation results. The remark ably improved image quality is achieved by change detection and segmentation.
본 논문에서는 전투기 조종석과 같은 제한된 공간에서 사용 가능한 광학 방식의 헤드 트랙커 시스템을 설계하고 그 성능을 시험하였다. 이 시스템은 다른 빛의 간섭을 차단하기 위해 적외선 발광다이오드와 두 대의 적외선 CCD 카메라를 사용하였다. 그리고 광학 방식의 헤드 트랙커 알고리즘은 특징점 추출 알고리즘과 3차원 움직임 추정 알고리즘으로 구성하였다. 카메라 이미지 평면 위에서 특징점의 2차원 위치 좌표를 획득하기 위한 특징점 추출 알고리즘은 디지털 영상 처리 기술인 문턱치 (thresholding)와 마스킹 (masking) 기법을 사용하였다. 특징점의 위치 변화로부터 조종사의 머리 움직임을 추정하는 3차원 움직임 추정 알고리즘은 확장 칼만 필터 (EKF)를 사용하였다. 또한, 정밀한 레이트 테이블을 사용하여 시스템 성능을 검증하고 회전 성능에 대해 관성 센서와 비교하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제5권11호
/
pp.2191-2203
/
2011
In this paper, we propose a fast and robust algorithm for fighting behavior detection based on Motion Vectors (MV), in order to solve the problem of low speed and weak robustness in traditional fighting behavior detection. Firstly, we analyze the characteristics of fighting scenes and activities, and then use motion estimation algorithm based on block-matching to calculate MV of motion regions. Secondly, we extract features from magnitudes and directions of MV, and normalize these features by using Joint Gaussian Membership Function, and then fuse these features by using weighted arithmetic average method. Finally, we present the conception of Average Maximum Violence Index (AMVI) to judge the fighting behavior in surveillance scenes. Experiments show that the new algorithm achieves high speed and strong robustness for fighting behavior detection in surveillance scenes.
Tran, Hong Tai;Na, In Seop;Kim, Young Chul;Kim, Soo Hyung
스마트미디어저널
/
제6권3호
/
pp.49-56
/
2017
Images and Videos that include the human face contain a lot of information. Therefore, accurately extracting human face is a very important issue in the field of computer vision. However, in real life, human faces have various shapes and textures. To adapt to these variations, A model-based approach is one of the best ways in which unknown data can be represented by the model in which it is built. However, the model-based approach has its weaknesses when the motion between two frames is big, it can be either a sudden change of pose or moving with fast speed. In this paper, we propose an enhanced human face-tracking model. This approach included human face detection and motion estimation using Cascaded Convolutional Neural Networks, and continuous human face tracking and modeling correction steps using the Active Appearance Model. A proposed system detects human face in the first input frame and initializes the models. On later frames, Cascaded CNN face detection is used to estimate the target motion such as location or pose before applying the old model and fit new target.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.