• 제목/요약/키워드: motion controller

검색결과 1,229건 처리시간 0.041초

Implementation of an Adaptive Robust Neural Network Based Motion Controller for Position Tracking of AC Servo Drives

  • Kim, Won-Ho
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제9권4호
    • /
    • pp.294-300
    • /
    • 2009
  • The neural network with radial basis function is introduced for position tracking control of AC servo drive with the existence of system uncertainties. An adaptive robust term is applied to overcome the external disturbances. The proposed controller is implemented on a high performance digital signal processing DSP TMS320C6713-300. The stability and the convergence of the system are proved by Lyapunov theory. The validity and robustness of the controller are verified through simulation and experimental results

운동관절 데이터베이스를 이용한 3차원 인체모형의 동작제어 (Motion Control of 3D Human Character Using Motion Database)

  • 김시중;국태용
    • 한국멀티미디어학회:학술대회논문집
    • /
    • 한국멀티미디어학회 1998년도 춘계학술발표논문집
    • /
    • pp.262-267
    • /
    • 1998
  • A hierarchical motion control system for animation of 3D human character is implemented using the motion database in realtime. The proposed motion control system consists of coordination controller for gait timing and balancing of walking motion, joint servo controller for realistic limb movement, and motion database for goal-directed character animation which makes time-consuming animation relatively easy task. As one example among the various applications of the proposed motion control system. We present a simple virtual reality system in which the motion control system plays a central role in generating realistic motion of virtual human character.

  • PDF

구동기 포화가 있는 견실 고속 온동 제어기 설계 및 정밀 위치 결정 시스템에의 적용 (Design of Robust High-Speed Motion Controller with Actuator Saturation and Its Application to Precision Positioning System)

  • 최현택;김봉근;서일홍;정완균
    • 제어로봇시스템학회논문지
    • /
    • 제6권9호
    • /
    • pp.768-776
    • /
    • 2000
  • A robust high-speed motion controller is proposed. The proposed controller consists of the proximate time optimal servomechai는 (PTOD) for high-speed motion, disturbance observer (DOB) for robustness, friction compensator, and saturation handling element, In the proposed controller, DOB basically provides the chance to apply PTOS to non-double integrator systems by drastically reducing disturbances as well as unwanted signals due to difference between real system and the double integrator model. But, in DOB-based systems, if control input is saturated due to control input PTOS and/or DOB, overall system stability cannot be guaranteed. To solve this problem, ribust stability, when the control input is saturated. Eventually, a simple saturation handling element is inserted to maintain internal stability of overall system. Also, we explain the our two saturation handling methods, Additional Saturation Element (ASE_ and Self Adjusting Saturation (SAS), are the equivalent solutions of the saturation problem to maintain internal stability. The stability and performance of the proposed controller are verified through numerical simulations and experiments using a precision linear motor system.

  • PDF

동작인식 및 촉감제공 게임 컨트롤러 (Motion-Recognizing Game Controller with Tactile Feedback)

  • 전석희;김상기;박건혁;한갑종;이성길;최승문;최승진;어홍준
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.1-6
    • /
    • 2008
  • 본 연구에서는 게임에서의 몰입도 증가를 위해 기존 버튼 방식의 입력에 사용자의 자연스러운 동작을 이용한 입력과 진동 촉감을 출력하는 게임 컨트롤러를 제안한다. 동작을 이용한 입력장치는 가속도 추적기와 적외선 비디오 카메라를 동시에 사용한다. 두 정보의 장단점을 보완/융합해서 컨트롤러의 움직임을 추적하고, 사용자의 동작을 인식한다. 다양한 종류의 진동촉감은 보이스코일 진동자를 이용하여 제공된다. 또한, 제안하는 게임 컨트롤러를 게임의 상호작용에 적용하는 방법을 제공하고, 응용 프로그램에의 적용가능성을 살펴본다.

  • PDF

이동 차량 탑재용 전자기 베어링 시스템 설계 (Design of Active Magnetic Bearing System for Moving Vehicles)

  • 김하용;심현식;이종원;강태하
    • 한국소음진동공학회논문집
    • /
    • 제15권3호
    • /
    • pp.364-370
    • /
    • 2005
  • The active magnetic bearing (AMB) systems mounted in moving vehicles are exposed to the disturbances due to the base motion, often leading to malfunction or damage as well as inaccurate positioning of the systems. Thus, in the controller design of such AMB systems, robustness to base disturbances becomes an essential requirement. In this study, effective control schemes are proposed for the homo-polar AMB system, which uses permanent magnets for generation of bias magnetic flux, when it is subject to base motion, and its control performance is experimentally evaluated. The base motion of AMB system is modeled as the dynamic disturbances in the gravity and base excitation forces. To effectively compensate for the disturbances, the angle feed-forward controller based on the inverse dynamic model and the acceleration feed-forward controller based on the normalized filtered-X LMS algorithm are proposed. The performance test of the prototype AMB system is carried out, when the system is mounted on rate table. The experimental results show that the performance of the proposed controllers for the AMB system is satisfactory in compensating for the disturbances due to the base motion.

산업용 로봇 제어를 위한 Preempt-RT 기반 멀티코어 모션 제어기의 구현 및 성능 평가 (Implementation and Performance Evaluation of Preempt-RT Based Multi-core Motion Controller for Industrial Robot)

  • 김익환;안효성;김태현
    • 대한임베디드공학회논문지
    • /
    • 제12권1호
    • /
    • pp.1-10
    • /
    • 2017
  • Recently, with the ever-increasing complexity of industrial robot systems, it has been greatly attention to adopt a multi-core based motion controller with high cost-performance ratio. In this paper, we propose a software architecture that aims to utilize the computing power of multi-core processors. The key concept of our architecture is to use shared memory for the interplay between threads running on separate processor cores. And then, we have integrated our proposed architecture with an industrial standard compliant IDE for automatic code generation of motion runtime. For the performance evaluation, we constructed a test-bed consisting of a motion controller with Preempt-RT Linux based dual-core industrial PC and a 3-axis industrial robot platform. The experimental results show that the actuation time difference between axes is 10 ns in average and bounded up to 689 ns under $1000{\mu}s$ control period, which can come up with real-time performance for industrial robot.

이동 차량 탑재용 전자기 베어링 시스템 설계 (Design of active magnetic bearing system for moving vehicles)

  • 김하용;심현식;이종원;강태하
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2004년도 추계학술대회논문집
    • /
    • pp.486-489
    • /
    • 2004
  • The active magnetic bearing (AMB) systems mounted in moving vehicles are exposed to the disturbances due to the base motion, often leading to malfunction or damage as well as inaccurate positioning of the systems. Thus, in the controller design of such AMB systems, robustness to base disturbances becomes an essential requirement. In this study, effective control schemes are proposed for the homo-polar AMB system, which uses permanent magnets for generation of bias magnetic flux, when it is subject to base motion, and its control performance is experimentally evaluated. The base motion of AMB system is modeled as the dynamic disturbances in the gravity and base excitation forces. To effectively compensate for the disturbances, the angle feed-forward controller based on the inverse dynamic model and the acceleration feed-forward controller based on the normalized filtered-X LMS algorithm are proposed. The performance test of the prototype AMB system is carried out, when the system is mounted on rate table. The experimental results show that the performance of the proposed controllers for the AMB system is satisfactory in compensating for the disturbances due to the base motion.

  • PDF

예측. 신경망 제어기를 이용한 유연 기계 시스템의 운동제어 (Motion Control of Flexible Mechanical Systems Using Predictive & Neural Controller)

  • 김정석;이시복
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.538-541
    • /
    • 1995
  • Joint flexibilities and frictional uncertainties are known to be a major cause of performance degration in motion control systems. This paper investigates the modeling and compensation of these undesired effects. A hybrid controller, which consists of a predictive controller and a neural network controller, is designed to overcome these undesired effects. Also learning scheme for friction uncertainies, which don't interfere with feedback controller dynamics, is discussed. Through simulation works with two inetia-torsional spring system having Coulomb friction, the effectiveness of the proposed hybrid controller was tested. The proposed predictive & neural network hybrid controller shows better performance over one when only predictive controller used.

  • PDF

Feasibility of a New Desktop Motion Analysis System with a Video Game Console for Assessing Various Three-Dimensional Wrist Motions

  • Kim, Kwang Gi;Park, Chan Soo;Jeon, Suk Ha;Jung, Eui Yub;Ha, Jiyun;Lee, Sanglim
    • Clinics in Orthopedic Surgery
    • /
    • 제10권4호
    • /
    • pp.468-478
    • /
    • 2018
  • Background: The restriction of wrist motion results in limited hand function, and the evaluation of the range of wrist motion is related to the evaluation of wrist function. To analyze and compare the wrist motion during four selected tasks, we developed a new desktop motion analysis system using the motion controller for a home video game console. Methods: Eighteen healthy, right-handed subjects performed 15 trials of selective tasks (dart throwing, hammering, circumduction, and winding thread on a reel) with both wrists. The signals of light-emitting diode markers attached to the hand and forearm were detected by the optic receptor in the motion controller. We compared the results between both wrists and between motions with similar motion paths. Results: The parameters (range of motion, offset, coupling, and orientations of the oblique plane) for wrist motion were not significantly different between both wrists, except for radioulnar deviation for hammering and the orientation for thread winding. In each wrist, the ranges for hammering were larger than those for dart throwing. The offsets and the orientations of the oblique plane were not significantly different between circumduction and thread winding. Conclusions: The results for the parameters of dart throwing, hammering, and circumduction of our motion analysis system using the motion controller were considerably similar to those of the previous studies with three-dimensional reconstruction with computed tomography, electrogoniometer, and motion capture system. Therefore, our system may be a cost-effective and simple method for wrist motion analysis.

Modeling and Synchronizing Motion Control of Twin-servo System

  • Kim, Bong-Keun;Chung, Wan-Kyun;Lee, Kyo-Beum;Song, Joong-Ho;Ick Choy
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.302-305
    • /
    • 1999
  • Twin-servo mechanism is used to increase the payload capacity and speed of high precision motion control system. In this paper, we propose a robust synchronizing motion control algorithm to cancel out the skew motion of twin-servo system caused by different dynamic characteristics of two driving systems and the vibration generated by high accelerating and decelerating motions. This proposed control algorithm consists of separate feedback motion control algorithm of each driving system and skew motion compensation algorithm between two systems. Robust model reference tracking controller is proposed as a separate motion controller and its disturbance attenuation property is shown. For the synchronizing motion, skew motion compensation algorithm is designed, and the stability of whole Closed loop system is proved based on passivity theory.

  • PDF