• Title/Summary/Keyword: motion controller

Search Result 1,231, Processing Time 0.028 seconds

Hardware Implementation of Motor Controller Based on Zynq EPP(Extensible Processing Platform) (Zynq EPP를 이용한 모터 제어기의 하드웨어 구현)

  • Moon, Yong-Seon;Lim, Seung-Woo;Lee, Young-Pil;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.11
    • /
    • pp.1707-1712
    • /
    • 2013
  • In this paper, we implement a hardware for motor control based on FPGA + embedded processor using Zynq EPP which is All Programmable SoC in order to improve a structural problem of motion control based on such as DSP, MCU and FPGA previously. The implemented motor controller that is fused controller with advantage of FPGA and embedded processor. The signal processing part of high velocity motor control is performed by motor controller based on FPGA. A motion profile and kinematic calculation that are required algorithm process such as operation of a complicate decimal point has processed in an embedded processor based on dual core. As a result of a hardware implementation, it has an advantage that has can be realized an effect of distribution process in one chip. It has also an advantage that is able to organize as a multi-axis motor controller through adding the IP core of motor control implemented on FPGA.

Hybrid Motion Blending Algorithm of 3-Axis SCARA Robot based on $Labview^{(R)}$ using Parametric Interpolation (매개변수를 이용한 $Labview^{(R)}$ 기반의 3축 SCARA로봇의 이종모션 제어 알고리즘)

  • Chung, Won-Jee;Ju, Ji-Hun;Lee, Kee-Sang
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.18 no.2
    • /
    • pp.154-161
    • /
    • 2009
  • In order to implement continuous-path motion on a robot, it is necessary to blend one joint motion to another joint motion near a via point in a trapezoidal form of joint velocity. First, the velocity superposition using parametric interpolation is proposed. Hybrid motion blending is defined as the blending of different two type's motions such as blending of joint motion with linear motion, in the neighborhood of a via point. Second, hybrid motion blending algorithm is proposed based on velocity superposition using parametric interpolation. By using a 3-axis SCARA (Selective Compliance Assembly Robot Arm) robot with $LabVIEW^{(R)}$ $controller^{(1)}$, the velocity superposition algorithm using parametric interpolation is shown to result in less vibration, compared with PTP(Point- To-Point) motion and Kim's algorithm. Moreover, the hybrid motion $algorithm^{(2)}$ is implemented on the robot using $LabVIEW^{(R)(1)}$ programming, which is confirmed by showing the end-effector path of joint-linear hybrid motion.

Development for Tilting Train Dynamics Motion Base

  • Song, Yong-Soo;Shin, Seung-Kwon;Kim, Jung-Seok;Ho, Seong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1158-1161
    • /
    • 2004
  • This paper describes the construction of a half sphere screen driving tilting simulator that can perform six degree-of-freedom (DOF) motions simulator to a tilting train. The mathematical equations of Tilting Train dynamics are first derived from the 6-DOF bicycle model and incorporated with the bogie, carbody, and suspension subsystems. The equations of motion are then programmed by visual C++ code. To achieve the simulator functions, a motion platform that is constructed by six electric-driven actuators is designed, and its kinetics/inverse kinetics analysis is also conducted. Driver operation signals such as carbady angle, accelerator, and tilting positions are measured to trigger the Tilting dynamics calculation and further actuate the cylinders by the motion platform control program. In addition, a digital PID controller is added to achieve the stable and accurate displacements of the motion platform. The experiments prove that the designed simulator is adequate in performing some special rail road driving situations discussed in this paper.

  • PDF

Design of Cubic Spline Interpolator using a PVAJT Motion Planner (PVAJT 모션플래너를 이용한 Cubic Spline 보간기의 설계)

  • Shin, Dong-Won
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.3
    • /
    • pp.33-38
    • /
    • 2011
  • A cubic spline trajectory planner with arc-length parameter is formulated with estimation by summing up to the 3rd order in Taylor's expansion. The PVAJT motion planning is presented to reduce trajectory calculation time at every cycle time of servo control loop so that it is able to generate cubic spline trajectory in real time. This method can be used to more complex spline trajectory. Several case studies are executed with different values of cycle time and sampling time, and showed the advantages of the PVAJT motion planner. A DSP-based motion controller is designed to implement the PVAJT motion planning.

Modeling and Motion Control of Piezoelectric Actuator for the Inchworm : Part 2. Motion Control of Inchworm Using Sliding Mode Method (이송자벌레를 위한 압전소자의 모델링 및 운동제어 : 2. 슬라이딩 모드법에 의한 이송자벌레의 운동제어)

  • Kim, Young-Shik;Park, Euncheol;Kim, In-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.878-884
    • /
    • 2005
  • This paper presents an algorithm for the precision motion control based on the dynamic characteristics of piezoelectric actuators in the inchworm. The dynamic characteristics are identified by the frequency domain modeling technique using the experimental data. For the motion control, the hysteresis behavior is compensated by the inverse hysteresis model. The dynamic stiffness of an inchworm is generally low compared to its driving condition, so mechanical vibration may degenerate the motion accuracy of the inchworm. The Sliding mode controller and the Kalman filter are designed for motion control of the inch-worm.

Position Control of Shape Memory Alloy Actuators Using Self Tuning Fuzzy PID Controller

  • Ahn Kyoung-Kwan;Nguyen Bao Kha
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.756-762
    • /
    • 2006
  • Shape Memory Alloy(SMA) actuators, which have the ability to return to a predetermined shape when heated, have many potential applications such as aeronautics, surgical tools, robotics and so on. Although the conventional PID controller can be used with slow response systems, there has been limited success in precise motion control of SMA actuators, since the systems are disturbed by unknown factors beside their inherent nonlinear hysteresis and changes in the surrounding environment of the systems. This paper presents a new development of a SMA position control system by using a self-tuning fuzzy PID controller. This control algorithm is used by tuning the parameters of the PID controller thereby integrating fuzzy inference and producing a fuzzy adaptive PID controller, which can then be used to improve the control performance of nonlinear systems. The experimental results of position control of SMA actuators using conventional and self-tuning fuzzy PID controllers are both included in this paper.

On the Ship's Berthig Control by introducing the Fuzzy Neural Network (선박 접이안의 퍼지학습제어)

  • 구자윤;이철영
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1994.04a
    • /
    • pp.55-67
    • /
    • 1994
  • Studies on the ship's automatic navigation & berthing control have been continued by way of solving the ship's mathematical model but the results of such studies have not reached to our satisfactory level due to its non-linear characteristics ar low speed. In this paper the authors propose a new berthing control system which can evaluate as closely as captain's decision-making by using the FNN(Fuzzy Neural Network) controller which can simulate captain's decision-making by using the FNN(Fuzzy neural Network) controller which can simulate captain's knowledge. This berthing controller consists of the navigation subsystem FNN controller and the berthing subsystem FNN controller. The learning data are drawn from Ship Handling Simulator (NavSim NMS90 MK III) and represent the ship motion characteristics internally According to learning procedure both FNN controllers can tune membership functions and identify fuzzy control rules automatically The verified results show the FNN controllers effective to incorporate captain's knowledge and experience of berthing.

  • PDF

A Study on Tracking Control for Networked Multi-Motor Systems

  • Lee, Hong-Hee;Jung, Eui-Heon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1897-1900
    • /
    • 2004
  • In recent years, a lot of industrial equipments have serial communication channel such as FieldBus (CAN, Profibus, etc.) or Ethernet that provides real time communication between industrial equipments. Theses applications include gantry crane, robot, chip mounter, etc.. In this paper, we discuss the synchronization technique for networked multi-motor systems where controllers (commercial servo amps) are distributed and interconnected by CAN (Controller Area Networks). We first describe the equivalent model for the individual servo-amp and motor using the frequency response. We design the $H{\infty}$ controller for motion synchronization. Finally, the synchronization technique using the equivalent model and the $H{\infty}$ controller is verified by the simulation and the experiment.

  • PDF

A Robust Adaptive Control of Robot Manipulator Based on TMS320C80

  • Han, Sung-Hyun;Jung, Dong-Yean;Shin, Heang-Bong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2540-2545
    • /
    • 2003
  • We propose a new technique to the design and real-time implementation of an adaptive controller for robotic manipulator based on digital signal processors in this paper. The Texas Instruments DSPs(TMS320C80) chips are used in implementing real-time adaptive control algorithms to provide enhanced motion control performance for dual-arm robotic manipulators. In the proposed scheme, adaptation laws are derived from model reference adaptive control principle based on the improved direct Lyapunov method. The proposed adaptive controller consists of an adaptive feed-forward and feedback controller and time-varying auxiliary controller elements. The proposed control scheme is simple in structure, fast in computation, and suitable for real-time control. Moreover, this scheme does not require any accurate dynamic modeling, nor values of manipulator parameters and payload. Performance of the proposed adaptive controller is illustrated by simulation and experimental results for a dual arm robot consisting of two 4-d.o.f. robots at the joint space and cartesian space.

  • PDF

Design of Sliding Mode Controller with Auto-tuning Method

  • He, Wei;Zhai, Yujia
    • Journal of the Korea Convergence Society
    • /
    • v.4 no.2
    • /
    • pp.43-50
    • /
    • 2013
  • Sliding mode control(SMC) are carried out in this literature. And to make the controllers perform better, fuzzy logic was chosen,it makes PID controller auto-tuning parameters and reduced the chattering problem of sliding mode control. Since SMC take error and derivative of error as inputs, after comparison some results are obtained.PID controller response faster yet sliding mode control is much steadier. However certain problems cannot be ignored that the chattering phenomenal cannot be reduced entirely and this motion may hurt the machine; this project only considered a simple system, there is no guarantee PID can work as well as in this case for a much more complex system. MATLAB simulink was the main approach to obtain the performance of the two controllers: to observe the control output of the two controllers, electric circuit and special controllers are designed and tested in MATLAB.