• Title/Summary/Keyword: motion capture

Search Result 647, Processing Time 0.029 seconds

Effects of golf drive swing on multiple functional wear wearing (다기능성 웨어 착용이 골프 드라이브 스윙에 미치는 효과)

  • Kim, Jungwoo;Park, Sunkyung;Uh, Mikyung
    • The Research Journal of the Costume Culture
    • /
    • v.22 no.4
    • /
    • pp.632-639
    • /
    • 2014
  • The purpose of this study was to verify the effect of drive swing on multiple functional wear wearing in golf. The subjects were 6 men ($22.67{\pm}0.82$ yrs, $175.42{\pm}3.42cm$, $78.75{\pm}4.78kg$), who had career each with at least 8 yers golf experience with right-hander. For kinemetical analysis, this study used equipments with 7 motion capture cameras (300Hz) and analysis program (Nexus1.5). The total time of the club head, displacement magnitude of the COM and swing plane were compared of according to functional wear wearing and non-weraing during golf drive swing. The results of the study are as follows. The total time of the club on wearing ($2.18{\pm}0.06sec$) was faster than non-wearing ($2.52{\pm}0.15sec$). Displacement magnitude of the COM on wearing ($4.06{\pm}0.67cm$) was shorter than non-wearing ($5.79{\pm}0.72cm$). Also, swing plane was found to be significantly different of 3 phase excepted BST-DS (back swing top-down swing) phase. AD-BST (address-back swing top) phase on wearing ($13.86{\pm}3.08cm$) decrease more than non-wearing ($20.82{\pm}3.99cm$), DS-IP (down swing-impact) phase on wearing ($6.25{\pm}1.35cm$) decrease more than non-wearing ($7.18{\pm}1.52cm$) and IP-FT (impact-follow though) phase on wearing ($7.93{\pm}2.09cm$) decrease more than non-wearing($9.68{\pm}2.02cm$). The multiple functional wear wearing was contribution to come close for one-plane, a long with consistency and accuracy on golf drive swing.

A Study on the Goal Setting Method for Increasing the Holed Probability in Slope Putting Stroke on an Artificial Putting Surface

  • Park, Jin;Kim, Ji Hyeon;Jung, Jong Min
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.4
    • /
    • pp.269-278
    • /
    • 2017
  • Objective: The purpose of this study was to develop a goal setting method for increasing the probability of a holed in a side inclined putting stroke. Method: Three-dimensional video data was recorded at a frequency of 120 hz per second after synchronizing 19 infrared motion capture systems (Qualisys, Gothenburg, Sweden). Putting green used a polycarbonate plate ($1.2{\times}2.4{\times}0.01meter$) with coefficient of friction (${\mu}=0.062$) and a real curve of the actual hole. Results: The velocity ratio between the club and the ball was 1:1.6 under various ball speed conditions in this study. The overall position of the break is 1 m to 1.4 m from the point where the ball leaves. If there is a slope, the ball follows the target line by the straightening force, and when it reaches 1 m position, the straightening force decreases by 30~50% and reaches to the deviation (break) point which is severely influenced by the slope. From here, the ball is aimed in a direction other than the target, and the size is affected by the slope. Conclusion: If there is a side slope, the ball moves away from the straight line, and the larger the slope, the closer the break point is to the starting point of the ball. Therefore, it is necessary to calculate the degree of departure according to the slope carefully, and it is preferable that the slower the speed is, the more the influence of the slope becomes. It is preferable to use the center of the hole as a reference when calculating the departure.

Effects of Real-time Visual Feedback Gait Training on Gait Stability in Older Adults (실시간 시각적 피드백 보행 훈련이 노인들의 보행 안정성에 미치는 영향)

  • Byun, Kyungseok;Han, Sooji;Bhang, Dawon;Seo, Hyundam;Lee, Hyo Keun
    • Korean Journal of Applied Biomechanics
    • /
    • v.30 no.3
    • /
    • pp.247-253
    • /
    • 2020
  • Objective: This study aimed to examine the effects of real-time visual feedback gait training on gait stability in older adults. Method: Twelve older adults participated in this study, being divided into 2 groups including a) visual feedback (VF) and b) non-visual feedback (NVF) groups. For 4 weeks, VF performed a treadmill walking training with real-time visual feedback about their postural information while NVF performed a normal treadmill walking training. For evaluations of gait stability, kinematic data of 15-minute treadmill walking were collected from depth-based motion capture system (30 Hz, exbody, Korea). Given that step lengths in both right and left sides were determined based on kinematic data, three variables including step difference, coefficient of variation, approximate entropy were calculated to evaluate gait symmetry, variability and complexity, respectively. Results: For research findings, VF exhibited significant improvements in gait stability after 4-week training in comparison to NVF, particularly in gait symmetry and complexity measures. However, greater improvement in gait variability was observed in NVF than VF. Conclusion: Given that visual feedback walking gives potential effectiveness on gait stability in older adults, gait training with visual feedback may be a robust therapeutic intervention in people with gait disturbances like instability or falls.

Development of a Horse Robot for Indoor Leisure Sports (실내 레저 스포츠를 위한 승마 로봇의 개발)

  • Lee, Wonsik;Lee, Youngdae;Moon, Chanwoo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.5
    • /
    • pp.161-166
    • /
    • 2014
  • Recently, indoor sports simulator equipped with virtual reality devices, like screen golf system, are riding high. There have been many attempts to develop the indoor simulator systems which can make people enjoy exercises in various sports area. A real horseback riding could not have been popularized, because of the cost involved, difficulty to learn and its dangerousness. In this research, a robotic horseback riding platform based on parallel mechanism and virtual reality device is proposed. The proposed platform provides realistic riding feels and various levels of riding difficulty. The equipped motion capture system with a vision sensor enables riders to correct their riding posture based on expert's one. The developed horseback riding platform make it possible to enjoy a horseback riding in all weather, and also can be used for systematic horseback riding training.

DYNAMIC MODEL DURING EMERGENCY MEDICAL TECHNICIANS LIFTING POSTURES (응급구조사들의 들어 올리는 자세의 동역학적 모델 분석)

  • Shin, Dong Min
    • The Korean Journal of Emergency Medical Services
    • /
    • v.8 no.1
    • /
    • pp.169-178
    • /
    • 2004
  • 본 연구의 목적은 응급구조사들이 긴 척추고정판을 이용하여 환자를 들어 올리는 3가지 다른 자세와 다른 3가지 부하 조건을 이용하여, 요추 4번과 5번의 압축력, 전단응력 그리고 합력의 변화를 동역학적 모델을 제시하기 위한 분석이다. 연구방법 : 36명의 남자가 본 연구의 실험에 자발적으로 동원되었으며, 나이는 평균 21.42세이고, 신장은 평균 174.05cm이며, 체중은 평균 78.05kg이다. 이 실험에서 부하 조건은 50, 70, 90kg이고, 들어 올리는 높이는 지상에서부터 95cm 이었으며, 들어 올리는 동안의 회전고리는 110cm이었다. 운동현상학적 자료는 2-D ProReflex Motion Capture Camera을 이용하였으며, sampling rate는 60Hz로 하였다. 결과 및 논의 : 동역학적 데이터 자료를 근거로 한 본 연구의 결론은 다음과 같다. Lunge 자세기술에서 전단응력과 합력 등이 최소의 stress로 요추 4번 5번에 미치는 것으로 나타났다. 그러나 Lunge 기술에서 압축력은 약간 증가되는 것으로 나타났다. 이 연구에서 Stooped 자세기술에서는 아주 큰 전단응력과 합력 등이 요추 4번, 5번 관절에 넓게 작용하는 것으로 나타났으며, 이는 들어 올리는 동작을 할 때 상해의 원인이 된다고 사료된다. 특히 응급구조사들이 들것을 들어 올릴 때 너무 큰 전단응력이 요추 4번, 5번 관절에 작용을 하면 비정상적으로 병리학상 또는 해부학상 신체적변화가 온다고 해석할 수 있다. 그래서 응급구조사들에게 들것을 들어올리는 stooped 자세는 아주 크고 많은 합력 작용하기 때문에 권고될만한 기술이 아니라고 해석 된다. Squat 자세에서 중간 정도의 압축력, 전단응력 그리고 합력이 작용된다. 만약 응급구조사가 전단응력 그리고 합력이 요추에 미치는 영향이 가장 걱정된다면, lunge 자세가 두 가지 힘을 줄여줄 수 있다고 사료된다. 마지막으로 응급구조사가 들것을 들어올리는 데는 squat 자세 기술이 가장 좋다고 사료 된다.

  • PDF

Analysis of Two-Way Communication Virtual Being Technology and Characteristics in the Content Industry (콘텐츠 산업에서 나타난 양방향 소통 가상존재 기술 및 특성 분석)

  • Kim, Jungho;Park, Jin Wan;Yoo, Taekyung
    • Journal of Broadcast Engineering
    • /
    • v.25 no.4
    • /
    • pp.507-517
    • /
    • 2020
  • Along with the development of computer graphics, real-time rendering, motion capture, and artificial intelligence technology, virtual being that enables two-way communication has emerged in the content industry. Although the commercialization of technologies and platforms is creating a two-way communication virtual being, there is a lack of analysis of what characteristics this virtual being has and how it can be used in each field. Therefore, through technical background survey and case study for the production of virtual being, the two-way communication virtual being is analyzed on the characteristics necessary for emotional exchange. The characteristics needed for emotional exchange were divided into interaction, individuality, and autonomy, and this characteristic is classified as the focus and how two-way communication virtual being will be used in the content field. This study is expected to provide significant implications for the research of content production and utilization using virtual being as a basic study of virtual being, which analyzes the technical background and characteristics for two-way communication required for virtual being production.

A Study on the Practical Human Robot Interface Design for the Development of Shopping Service Support Robot (쇼핑 서비스 지원 로봇 개발을 위한 실체적인 Human Robot Interface 디자인 개발에 관한 연구)

  • Hong Seong-Soo;Heo Seong-Cheol;Kim Eok;Chang Young-Ju
    • Archives of design research
    • /
    • v.19 no.4 s.66
    • /
    • pp.81-90
    • /
    • 2006
  • Robot design serves as the crucial link between a human and a robot, the cutting edge technology. The importance of the robot design certainly will be more emphasized when the consumer robot market matures. For coexistence of a human and a robot, human friendly interface design and robot design with consideration of human interaction need to be developed. This research extracts series of functions in need which are consisted of series of case studies for planning and designing of 'A Shopping Support Robot'. The plan for the robot is carried out according to HRI aspects of Design and the designing process fellows. Definite results are derived by the application of series of HRI aspects such as gestures, expressions and sound. In order to verify the effectiveness of application of HRI aspects, this research suggests unified interaction that is consisted of motion-capture, animation, brain waves and sound between a human and a robot.

  • PDF

The Effects of Virtual Reality-based Continuous Slow Exercise on Factors for Falls in the Elderly (가상현실에서 연속적 느린 운동이 노인의 낙상 요인에 미치는 영향)

  • Kim, Jung-Jin;Gu, Seul;Lee, Jin-Ju;Kim, Yu-Shin;Yoon, Bum-Chul
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.90-97
    • /
    • 2012
  • Purpose: The purpose of this study was to assess the effects of virtual reality-based continuous slow exercise on muscle strength and dynamic balance capacity, in older adults over 65 years of age. Methods: Twenty-six volunteers were randomly divided into two groups; a Virtual Reality (VR) exercise-group ($67.8{\pm}4.1$ yrs) and a Control group ($65.5{\pm}5.2$ yrs). The VR group participated in eight weeks of virtual reality exercise, utilizing modified Tai-Chi provided by a motion capture system, and the Control group had no intervention. The hip muscle strength and dynamic balance of the members of both the VR group and the Control group were measured at pre- and post-intervention, using a multimodal dynamometer, and backward stepping test, respectively. Results: 1. After the 8-week VR-based exercise, the VR group showed significant improvement of hip strength, compared to the control group: hip extension (p=0.00), flexion (p=0.00), abduction (p=0.00), and adduction (p=0.00). 2. After the 8-week VR-based exercise, the VR group showed significant improvement of dynamic balance capacity as ground reaction force, compared to the control group. Eyes opened backward stepping test: Fx (+) (p=0.00), Fy (-) (p=0.02), Ver (+) (p=0.02) direction. Eyes closed backward stepping test: Fx (+) (p=0.04), Fy (-) (p=0.04), Ver (+) (p=0.03) direction. Conclusion: The VR group showed improvement of their hip muscle strength, and dynamic balance capacity. Therefore VR-based continuous slow exercise would contribute to reducing the risk of falls in the elderly.

People Tracking and Accompanying Algorithm for Mobile Robot Using Kinect Sensor and Extended Kalman Filter (키넥트센서와 확장칼만필터를 이용한 이동로봇의 사람추적 및 사람과의 동반주행)

  • Park, Kyoung Jae;Won, Mooncheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.4
    • /
    • pp.345-354
    • /
    • 2014
  • In this paper, we propose a real-time algorithm for estimating the relative position and velocity of a person with respect to a robot using a Kinect sensor and an extended Kalman filter (EKF). Additionally, we propose an algorithm for controlling the robot in the proximity of a person in a variety of modes. The algorithm detects the head and shoulder regions of the person using a histogram of oriented gradients (HOG) and a support vector machine (SVM). The EKF algorithm estimates the relative positions and velocities of the person with respect to the robot using data acquired by a Kinect sensor. We tested the various modes of proximity movement for a human in indoor situations. The accuracy of the algorithm was verified using a motion capture system.

The Effects of Muscle, Balance and Walking Training on Gait Kinematics in Children with Down Syndrome (근력, 평형성, 보행 동작훈련이 다운증후군 아동의 보행에 미치는 효과)

  • Lim, Bee-Oh;Kim, Kye-Wan;Yu, Yeon-Joo
    • Korean Journal of Applied Biomechanics
    • /
    • v.19 no.1
    • /
    • pp.107-115
    • /
    • 2009
  • The purpose of this study were to investigate the effects of muscle, balance and walking training on muscle, balance and gait kinematics in children with Down syndrome. Nine children ($9{\sim}12$ years old) with Down syndrome participated in this study. The participant with Down syndrome participated in muscle, balance and walking training for 12 weeks, three times a week Kinematic variables of gait were measured 3-dimentional motion capture system. The results indicated that the pelvis rotation decreased, the knee and hip flexion increased, decreased leg sway during the swing phase, the cadence increased, and the stride length decreased after the muscle, balance and walking training. In conclusion, Down syndrome's gait kinematic variables improved after the muscle, balance and walking training.