• Title/Summary/Keyword: motion analysis

Search Result 7,093, Processing Time 0.037 seconds

The Effects of Different Backrest Pivot Positions on the Human Body During Reclining of the Office Chair (사무용 의자에서 등판의 회전축 위치가 틸트시 인체에 미치는 영향)

  • Chung, Kyung-Ryul;Hyeong, Joon-Ho;Choi, Chun-Ho;Kim, Sa-Yup;Hong, Gyu-Seog
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.2
    • /
    • pp.167-174
    • /
    • 2010
  • In this study, the optimal position for the backrest pivot of an office chair was investigated by evaluating its performance in terms of the lumbar support and sliding distance of the back from the backrest during tilting motions. The simulation was performed using a mathematical model, which included a human body and a chair. Forty-two backrest pivot points were selected on the sagittal plane around the hip joint of a sitting model. A motion analysis study was also performed using a prototype of an office chair (A-type) with a backrest pivot located on the hip joint of a normal Korean model and a typical office chair (B-type) with its pivot located under the seat. The simulation results showed that both the lordosis angle and the slide distance of the back were minimized when the backrest pivot was positioned close to the hip joint. The experimental results showed that the slide distance and gap between the sitter's lumbar and the backrest was smaller with the A-type than the B-type. Based on the simulation and experimental results, it can be concluded that the backrest can support the sitter's lumbar area more effectively as the pivot position for reclining approaches closer to the hip joint. In this position, the sitter can maintain a comfortable and healthy sitting posture. This paper presents the methods and guidelines for designing an office chair with ergonomic considerations.

A Study of Torsional Vibrations of Suspended Bridges (현수교(懸垂橋)의 비틀림진동(振動)에 관한 연구(硏究))

  • Min, Chang Shik;Kim, Saeng Bin;Son, Seong Yo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.27-37
    • /
    • 1983
  • A method of dynamic analysis is developed for torsional free vibrations of elliptical-box girder type or stiffening truss system suspension bridge. In this study, the method based on a finite element technique using a digital computer, is illustrated by two numerical examples, the Namhae Bridge which is located in Kyungsang nam-do opened on June, 1973, and the Mt. Chunma Bridge is simple span pedestrian's suspension bridge with lateral bracing system in Mt. Chunma, Kyungki-do, are used. In general, dynamic modes of complex suspension bridges are three-dimensional in form, i.e., coupling between vertical and torsional motions. However, introduced that amplitudes of oscillation are infinitesimal for coincidence with the purpose of it's use, thereupon, the torsional vibration analyses are treated without coupling terms. A sufficient number of natural frequencies and mode shapes for torsional free vibration are presented in this paper. In the case of Mt. Chunma Bridge, the natural frequencies and periods are computed with and without reinforcement, respectively, and compared their discrepancies. The influence of the auxiliary reinforcing cables is prevailing in the first few modes, namely, 1st and 2nd in symmetric and 1st, 2nd and 3rd in antisymmetric vibration, and conspicuous in the symmetric compared with the antisymmetric motion, but in the higher modes, this kind of simple accessory elucidates rether converse effects. In the Namhae Bridge, the results are compared with the Manual's obtained by wind tunnel test. It reveals commendable agreement.

  • PDF

An FSI Simulation of the Metal Panel Deflection in a Shock Tube Using Illinois Rocstar Simulation Suite (일리노이 록스타 해석환경을 활용한 충격파관 내 금속패널 변형의 유체·구조 연성 해석)

  • Shin, Jung Hun;Sa, Jeong Hwan;Kim, Han Gi;Cho, Keum Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.5
    • /
    • pp.361-366
    • /
    • 2017
  • As the recent development of computing architecture and application software technology, real world simulation, which is the ultimate destination of computer simulation, is emerging as a practical issue in several research sectors. In this paper, metal plate motion in a square shock tube for small time interval was calculated using a supercomputing-based fluid-structure-combustion multi-physics simulation tool called Illinois Rocstar, developed in a US national R amp; D program at the University of Illinois. Afterwards, the simulation results were compared with those from experiments. The coupled solvers for unsteady compressible fluid dynamics and for structural analysis were based on the finite volume structured grid system and the large deformation linear elastic model, respectively. In addition, a strong correlation between calculation and experiment was shown, probably because of the predictor-corrector time-integration scheme framework. In the future, additional validation studies and code improvements for higher accuracy will be conducted to obtain a reliable open-source software research tool.

Effects of Nonlinear Motions due to Abutment-Soil Interaction upon Seismic Responses of Multi-Span Simply Supported Bridges (비선형 교대운동이 교량구조물의 지진응답에 미치는 영향분석)

  • 김상효;마호성;이상우;경규혁
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.17-24
    • /
    • 2002
  • Dynamic behaviors of a bridge system with several simple spans are evaluated to examine the effects of nonlinear abutment motions upon the seismic responses of the bridge. The idealized mechanical model for the whole bridge system is developed by adopting the multi-degree-of-freedom system, which can consider various influential components. To compare the results, both linear and nonlinear abutment-backfill models are prepared. The linear system has the constant abutment stiffness, and the nonlinear system has the nonlinear stiffness considering the abutment stiffness degradation due to the abutment-soil interaction. From simulation results, the nonlinear abutment motion is found to have an important influence upon the global bridge motions. Maximum relative distances between adjacent vibration units are found to be larger than those found from the linear system. In particular, maximum relative distances at the location with the highest possibility of unseating failure are increased up to about 30% in the nonlinear system. The effects of nonlinear behavior of an abutment on the bridge seismic behaviors are also increased as the number of span increase. Therefore, it can be concluded that the abutment-soil interaction should be considered in the seismic analysis of the bridge system.

Arthroscopically Assisted Repair of Large to Massive Rotator Cuff Tears -The Role of Acromioplasty- (중범위 이상 회전근 개 파열 환자의 관절경적 봉합술 -견봉성형술의 역할-)

  • Lee, Kwang-Won;Kim, Kap-Jung;Lee, Hang-Ho;Kim, Byung-Sung;Kim, Ha-Yong;Choi, Won-Sik
    • Clinics in Shoulder and Elbow
    • /
    • v.6 no.2
    • /
    • pp.143-148
    • /
    • 2003
  • Objectives: To analyze the postoperative functional outcome of shoulder in patients with arthroscopically assisted repair of large to massive rotator cuff tears with or without acromioplasty and role of acromioplasty. Materials and Methods: From June 1996 to June 2002, twenty six patients with large to massive rotator cuff tears were undergone arthroscopically assisted repair. Mean follow up was over one year. Fourteen were male and twelve were female. Mean age was 51 years old(39-66). Mean duration was 9 months. Acromioplasty was done in 14 cases concomitantly. They were divided into two groups. Group I: arthroscopic cuff repair with acromioplasty(14 cases). Group II: arthroscopic cuff repair without acromioplasty(12 cases). Each shoulder was evaluated at preoperative and final follow-up with Visual Analogue Scale(VAS), University of Pennsylvania Patient self-assessment of pain, University of Pennsylvania Patient self-assessment of function, ASES standardized shoulder assessment form, Simple Shoulder Test, UCLA score and range of motion(ROM). We analyzed the differences between the two groups. Shoulder ROM and acromioplasty were determining factors. Statistics was tested by correlation analysis and repeated measure ANOVA test. Results: At the final follow up, functional outcome and pain were improved but they had no statistical significance between the two groups(p>0.05). Combined procedure, acromioplasty, didn't affect on VAS. UCLA score, University of Pennsylvania Patient self-assessment of pain, University of Pennsylvania Patient self-assessment of function, ASf:S standardized shoulder assessment form and Simple Shoulder Test(p>0.05). In group II, forward flexion and abduction were statistically improved at the final follow up than in group I(p<0.05). Conclusions: It appears that arthroscopic repair is satisfactory procedure in patients with large to massive cuff tears. Combined procedure, acromioplasty, doesn't affect on postoperative functional outcome of shoulder.

A Systematic Review on Accelerometer to Measure Activity of Daily Living of Patients with Stroke (뇌졸중 환자의 일상생활활동 평가도구인 가속도계에 대한 체계적 고찰)

  • Lee, Joo-Hyun;Park, Jin-Hyuck;Kim, Yeonju;Park, Hae Yean;Park, Ji-Hyuk
    • Therapeutic Science for Rehabilitation
    • /
    • v.5 no.2
    • /
    • pp.57-69
    • /
    • 2016
  • Objective: The purpose of this study was to systematically review the articles using accelerometer to measure activity of daily living of patients with stroke. Methods: Depending on selection criteria, 13 studies were searched for PubMed, EMBASE, and Cochrane library database from February 2014 to March 2014. A total of 331 papers were searched, and 13 of these were selected. Results: In studies of 13 selected, acute, subacute, and chronic patients with stroke were enrolled. The kind of accelerometer was uniaxial, biaxial, and triaxial, activity monitor. Measurement activities were mainly arm activity, walking activity, and attachment sites were also various depending on the measurement activities. A measured variable was the total number of activities, the movement speed of the patients, ratio between affected and non-affected, and motion analysis. The result indicated that significant correlation with the other assessment tools in all studies. Conclusions: Accelerometer will be applied with a tool for measuring activity of daily living of patients with stroke, depending on activities characteristics. Further, we need accelerometer studies to apply with a variety of assessment in clinical practice or community settings.

Physical Structure of Eddies in the Southwestern East Sea (동해남서해역 와류의 물리적구조)

  • 이흥재;변상경
    • 한국해양학회지
    • /
    • v.30 no.3
    • /
    • pp.170-183
    • /
    • 1995
  • Eddies and surface current field in the southwestern part of the East Sea were investigated using satellite-tracked drifters, CTD, and ADCP from November 1992 to September 1993. Trajectories of surface drifters provided information for the first time on the meandering motion of the East Korean Warm Current in the Ullung Basin (referred as UB) and clearly indicated the existence of cyclonic and anticyclonic eddies of various scales. Anticyclonic eddies persisting for a relatively long period were observed in UB and the southwestern corner of the Northern (Japan) Basin (SNB), while a cyclonic eddy was found in the coastal area between Sokcho and Donghae during the summer. Analysis shows that the eddy in UB behaved as a stationary eddy at least during the observation period and the cyclonic eddy was closely related to the existence of a cold water mass. The anticyclonic eddy in SNB was larger than that in UB, but much elongated in shape. The eddy in UB is characteristic of major and minor axes of about 120 and 70 km, revolution period of 13.6 days, mean swirl velocity of about 24 cm/s, and mean eddy kinetic energy of 392 cm$\^$2//s$\^$2/. The eddy in SNB is described as follows; major and minor axes of 168 and 86 km, period of 14.9 days, mean swirl velocity of 29 cm/s and mean eddy kinetic energy of 629 cm$\^$2//s$\^$2/. The mean translational speed is about 3 cm/s for both eddies. The agreement of the surface current pattern in UB observed by ADCP with the geostrophic flow pattern may suggest that the eddy in UB was nearly in geostrophic balance. The eddy was found to be strongly bottom-controlled.

  • PDF

Effects of Loading on Biomechanical Analysis of Lower Extremity Muscle and Approximate Entropy during Continuous Stair Walking (지속적인 계단 보행에서 부하가 하지 근육의 생체역학적 변인과 근사 엔트로피에 미치는 영향)

  • Kim, Sung-Min;Kim, Hye-Ree;Ozkaya, Gizem;Shin, Sung-Hoon;Kong, Se-Jin;Kim, Eon-Ho;Lee, Ki-Kwang
    • Korean Journal of Applied Biomechanics
    • /
    • v.25 no.3
    • /
    • pp.323-333
    • /
    • 2015
  • Objective : The purpose of this study was to investigate the changes of gait patterns and muscle activations with increased loads during stair walking. Also, it can be used as descriptive data about continuous stair walking in a real life setting. Method : Twelve sedentary young male adults(Age: $27.0{\pm}1.8yrs$, Weight: $65.8{\pm}9.9kg$) without any lower extremity injuries participated in this study. Participants performed stair walking up 7 floors and their ascending and descending motion on each floor was analyzed. A wireless electromyography(EMG) were attached on the Rectus Femoris(RF), Biceps Femoris(BF), Gastrocnemius(GN), Tibialis Anterior(TA) muscle to calculate integrated EMG(iEMG), median frequency(MDF) and co-contraction index(CI). Chest and left heel accelerometer signal were recorded by wireless accelerometer and those were used to calculate approximate entropy(ApEn) for analyzing gait pattern. All analyses were performed with SPSS 21.0 and for repeated measured ANOVA and Post-hoc was LSD. Results : During ascending stairs, there were a statistically significant difference in Walking time between 1-2nd and other floors(p=.000), GN iEMG between 2-3th and 6-7th(p=.043) floor, TA MDF between 1-2nd and 5-6th(p=.030), 6-7th(p=.015) floor and TA/GN CI between 2-3th and 6-7th(p=.038) floor and ApEn between 1-2nd and 6-7th(x: p=.003, y: p=.005, z: p=.006) floor. During descending stairs, there were a statistically significant difference in TA iEMG between the 6-5th and 3-2nd(p=.026) floor, and for the ApEn between the 1-2nd and 6-7th(x: p=.037, y: p=.000, z: p=.000) floor. Conclusion : Subjects showed more regular pattern and muscle activation response caused by regularity during ascending stairs. Regularity during the first part of stair-descending could be a sign of adaptation; however, complexity during the second part could be a strategy to decrease the impact.

Effects of Visual Information Blockage on Landing Strategy during Drop Landing (시각 정보의 차단이 드롭랜딩 시 착지 전략에 미치는 영향)

  • Koh, Young-Chul;Cho, Joon-Haeng;Moon, Gon-Sung;Lee, Hae-Dong;Lee, Sung-Cheol
    • Korean Journal of Applied Biomechanics
    • /
    • v.21 no.1
    • /
    • pp.31-38
    • /
    • 2011
  • This study aimed to determine the effects of the blockage of visual feedback on joint dynamics of the lower extremity. Fifteen healthy male subjects(age: $24.1{\pm}2.3\;yr$, height: $178.7{\pm}5.2\;cm$, weight: $73.6{\pm}6.6\;kg$) participated in this study. Each subject performed single-legged landing from a 45 cm-platform with the eyes open or closed. During the landing performance, three-dimensional kinematics of the lower extremity and ground reaction force(GRF) were recorded using a 8 infrared camera motion analysis system (Vicon MX-F20, Oxford Metric Ltd, Oxford, UK) with a force platform(ORG-6, AMTI, Watertown, MA). The results showed that at 50 ms prior to foot contact and at the time of foot contact, ankle plantar-flexion angle was smaller(p<.05) but the knee joint valgus and the hip flexion angles were greater with the eyes closed as compared to with the eyes open(p<.05). An increase in anterior GRF was observed during single-legged landing with the eyes closed as compared to with the eyes open(p<.05). Time to peak GRF in the medial, vertical and posterior directions occurred significantly earlier when the eyes were closed as compared to when the eyes were open(p<.05). Landing with the eyes closed resulted in a higher peak vertical loading rate(p<.05). In addition, the shock-absorbing power decreased at the ankle joint(p<.05) but increased at the hip joints when landing with the eyes closed(p<.05). When the eyes were closed, landing could be characterized by a less plantarflexed ankle joint and more flexed hip joint, with a faster time to peak GRF. These results imply that subjects are able to adapt the control of landing to different feedback conditions. Therefore, we suggest that training programs be introduced to reduce these injury risk factors.

The Influence of Video-Assisted Thoracic Surgery on Hospital Course of Spontaneous Pneumothorax (비디오 흉강경 수술법이 자연기흉의 치료과정에 미치는 영향)

  • 김재영;이석열;이길노
    • Journal of Chest Surgery
    • /
    • v.31 no.2
    • /
    • pp.142-148
    • /
    • 1998
  • Video-assisted thoracic surgery(VATS) is emerging as a viable alternative to thoracotomy when surgical treatment of spontaneous pneumothorax is required. 20 patients with spontaneous pneumothorax underwent bullectomy between July 1995 and May 1996. The patients were divided into two groups : Control group ; the patients who received with mid-axillary approach(n=10), Experimental group ; the patients who received with VATS (n=10). The results were as follows ; 1. The total sex distribution was male predominance (male:female=17:3). Mean age of control group was 29.6$\pm$9.8 years and experimental group was 27.2$\pm$11.9 years. 2. The mean period of postoperative chest tube indwelling duration and hospital stay were 3.3$\pm$0.8 days and 7.9$\pm$1.2 days in control group and 2.1$\pm$0.9 days and 5.2$\pm$3.1 days in experimental group(p=0.005 and p=0.02). 3. The mean time of operation, vital signs and arterial blood gas analysis did not showed any statistical differences between the groups. 4. Percent recovery of tidal volume and forced vital capacity were significantly improved in experimental group comparing with control group (p<0.05). 5. The patients undergoing VATS experienced significantly less postoperative pain and limitation of motion. In conclusion, VATS is safe and offers the potential benefits of shorter postoperative hospital stays and less pain with cosmetic benefits.

  • PDF