• Title/Summary/Keyword: mosaic-based image

Search Result 66, Processing Time 0.025 seconds

A Two-Layer Steganography for Mosaic Images

  • Horng, Ji-Hwei;Chang, Chin-Chen;Sun, Kun-Sheng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.9
    • /
    • pp.3298-3321
    • /
    • 2021
  • A lot of data hiding schemes have been proposed to embed secret data in the plain cover images or compressed images of various formats, including JPEG, AMBTC, VQ, etc. In this paper, we propose a production process of mosaic images based on three regular images of coffee beans. A primary image is first mimicked by the process to produce a mosaic cover image. A two-layer steganography is applied to hide secret data in the mosaic image. Based on the low visual quality of the mosaic cover image, its PSNR value can be improved about 1.5 dB after embedding 3 bpp. This is achieved by leveraging the newly proposed polarized search mask and the concepts of strong embedding and weak embedding. Applying steganography to the mosaic cover images is a completely new idea and it is promising.

Active Object Tracking using Image Mosaic Background

  • Jung, Young-Kee;Woo, Dong-Min
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.1
    • /
    • pp.52-57
    • /
    • 2004
  • In this paper, we propose a panorama-based object tracking scheme for wide-view surveillance systems that can detect and track moving objects with a pan-tilt camera. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion information. For the camera motion estimation, we calculate affine motion parameters for each frame sequentially with respect to its previous frame. The camera motion is robustly estimated on the background by discriminating between background and foreground regions. The modified block-based motion estimation is used to separate the background region. Each moving object is segmented by image subtraction from the mosaic background. The proposed tracking system has demonstrated good performance for several test video sequences.

Feature Based Multi-Resolution Registration of Blurred Images for Image Mosaic

  • Fang, Xianyong;Luo, Bin;He, Biao;Wu, Hao
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.37-46
    • /
    • 2010
  • Existing methods for the registration of blurred images are efficient for the artificially blurred images or a planar registration, but not suitable for the naturally blurred images existing in the real image mosaic process. In this paper, we attempt to resolve this problem and propose a method for a distortion-free stitching of naturally blurred images for image mosaic. It adopts a multi-resolution and robust feature based inter-layer mosaic together. In each layer, Harris corner detector is chosen to effectively detect features and RANSAC is used to find reliable matches for further calibration as well as an initial homography as the initial motion of next layer. Simplex and subspace trust region methods are used consequently to estimate the stable focal length and rotation matrix through the transformation property of feature matches. In order to stitch multiple images together, an iterative registration strategy is also adopted to estimate the focal length of each image. Experimental results demonstrate the performance of the proposed method.

The New Area Subdivision and Shadow Generation Algorithms for Colored Paper Mosaic Rendering (새로운 색종이 모자이크 모양 결정과 입체감 생성 알고리즘에 관한 연구)

  • Seo, SangHyun;Kang, DaeWook;Park, YoungSub;Yoon, Kyunghyun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.7 no.2
    • /
    • pp.11-19
    • /
    • 2001
  • This paper proposes a colored paper mosaic rendering technique based on image segmentation that can automatically generate torn and tagged colored paper mosaic effect. and 3D effect that come about in human-made mosaic work can be represented by generating shadow using difference of paper thickness. Previous method did not produce satisfactory results due to the ineffectiveness of having to use pieces of the same size. The proposed two methods for determination of paper shape and location that are based on segmentation can subdivide image area by considering characteristics of image. The first method is to generate Voronoi polygon after subdividing the segmented image again using quad tree. And the second method is to apply the Voronoi diagram on each segmentation layer. Through these methods, the characteristic of the image is expressed in more detail than previous colored paper mosaic rendering method and these methods enable to produce image that is closer to human-made mosaic work.

  • PDF

Mosaic Detection Based on Edge Projection in Digital Video (비디오 데이터에서 에지 프로젝션 기반의 모자이크 검출)

  • Jang, Seok-Woo;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.5
    • /
    • pp.339-345
    • /
    • 2016
  • In general, mosaic blocks are used to hide some specified areas, such as human faces and disgusting objects, in an input image when images are uploaded on a web-site or blog. This paper proposes a new algorithm for robustly detecting grid mosaic areas in an image based on the edge projection. The proposed algorithm first extracts the Canny edges from an input image. The algorithm then detects the candidate mosaic blocks based on horizontal and vertical edge projection. Subsequently, the algorithm obtains real mosaic areas from the candidate areas by eliminating the non-mosaic candidate regions through geometric features, such as size and compactness. The experimental results showed that the suggested algorithm detects mosaic areas in images more accurately than other existing methods. The suggested mosaic detection approach is expected to be utilized usefully in a variety of multimedia-related real application areas.

Mosaic image generation of AISA Eagle hyperspectral sensor using SIFT method (SIFT 기법을 이용한 AISA Eagle 초분광센서의 모자이크영상 생성)

  • Han, You Kyung;Kim, Yong Il;Han, Dong Yeob;Choi, Jae Wan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.165-172
    • /
    • 2013
  • In this paper, high-quality mosaic image is generated by high-resolution hyperspectral strip images using scale-invariant feature transform (SIFT) algorithm, which is one of the representative image matching methods. The experiments are applied to AISA Eagle images geo-referenced by using GPS/INS information acquired when it was taken on flight. The matching points between three strips of hyperspectral images are extracted using SIFT method, and the transformation models between images are constructed from the points. Mosaic image is, then, generated using the transformation models constructed from corresponding images. Optimal band appropriate for the matching point extraction is determined by selecting representative bands of hyperspectral data and analyzing the matched results based on each band. Mosaic image generated by proposed method is visually compared with the mosaic image generated from initial geo-referenced AISA hyperspectral images. From the comparison, we could estimate geometrical accuracy of generated mosaic image and analyze the efficiency of our methodology.

Geocoding of the Free Stereo Mosaic Image Generated from Video Sequences (비디오 프레임 영상으로부터 제작된 자유 입체 모자이크 영상의 실좌표 등록)

  • Noh, Myoung-Jong;Cho, Woo-Sug;Park, Jun-Ku;Kim, Jung-Sub;Koh, Jin-Woo
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.3
    • /
    • pp.249-255
    • /
    • 2011
  • The free-stereo mosaics image without GPS/INS and ground control data can be generated by using relative orientation parameters on the 3D model coordinate system. Its origin is located in one reference frame image. A 3D coordinate calculated by conjugate points on the free-stereo mosaic images is represented on the 3D model coordinate system. For determining 3D coordinate on the 3D absolute coordinate system utilizing conjugate points on the free-stereo mosaic images, transformation methodology is required for transforming 3D model coordinate into 3D absolute coordinate. Generally, the 3D similarity transformation is used for transforming each other 3D coordinates. Error of 3D model coordinates used in the free-stereo mosaic images is non-linearly increased according to distance from 3D model coordinate and origin point. For this reason, 3D model coordinates used in the free-stereo mosaic images are difficult to transform into 3D absolute coordinates by using linear transformation. Therefore, methodology for transforming nonlinear 3D model coordinate into 3D absolute coordinate is needed. Also methodology for resampling the free-stereo mosaic image to the geo-stereo mosaic image is needed for overlapping digital map on absolute coordinate and stereo mosaic images. In this paper, we propose a 3D non-linear transformation for converting 3D model coordinate in the free-stereo mosaic image to 3D absolute coordinate, and a 2D non-linear transformation based on 3D non-linear transformation converting the free-stereo mosaic image to the geo-stereo mosaic image.

Infra-Red Reflectography Based Mural Underdrawing Mosaicing Technique (적외선 리플렉토그래피 기반 벽화 밑그림 영상 모자익 기법)

  • Lee, Tae-Seong;Gwon, Yong-Mu;Go, Han-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.191-194
    • /
    • 2003
  • In this paper, we propose a new accurate and robust image mosaic technique of the mural underdrawing taken from the infra-red camera, which is based on multiple image registration and adaptive blending technique. The image mosaicing methods which have been developed so far have the following deficits. It is hard to generate a high resolution image when there are regions that do not have features or intensity gradients, and there is a trade-off in overlapping region site in view of registration and blending. We consider these issues as follows. First, in order to mosaic Images with neither noticeable features nor intensity gradients, we use a Projected supplementary pattern and pseudo color image for features in the image Pieces which are registered. Second, we search the overlapping region size with minimum blending error between two adjacent images and then apply blending technique to minimum error overlapping region. Finally, we could find our proposed method is more effective and efficient for image mosaicing than conventional mosaic techniques and also is more adequate for the application of infra-red mural underdrawing mosaicing. Experimental results show the accuracy and robustness of the algorithm.

  • PDF

Dynamic Mosaic based Compression (동적 모자이크 기반의 압축)

  • 박동진;김동규;정영기
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.1944-1947
    • /
    • 2003
  • In this paper, we propose a dynamic-based compression system by creating mosaic background and transmitting the change information. A dynamic mosaic of the background is progressively integrated in a single image using the camera motion information. For the camera motion estimation, we calculate affine motion parameters for each frame sequentially with respect to its previous frame. The camera motion is robustly estimated on the background by discriminating between background and foreground regions. The modified block-based motion estimation is used to separate the back-ground region.

  • PDF

Camera pose estimation framework for array-structured images

  • Shin, Min-Jung;Park, Woojune;Kim, Jung Hee;Kim, Joonsoo;Yun, Kuk-Jin;Kang, Suk-Ju
    • ETRI Journal
    • /
    • v.44 no.1
    • /
    • pp.10-23
    • /
    • 2022
  • Despite the significant progress in camera pose estimation and structure-from-motion reconstruction from unstructured images, methods that exploit a priori information on camera arrangements have been overlooked. Conventional state-of-the-art methods do not exploit the geometric structure to recover accurate camera poses from a set of patch images in an array for mosaic-based imaging that creates a wide field-of-view image by sewing together a collection of regular images. We propose a camera pose estimation framework that exploits the array-structured image settings in each incremental reconstruction step. It consists of the two-way registration, the 3D point outlier elimination and the bundle adjustment with a constraint term for consistent rotation vectors to reduce reprojection errors during optimization. We demonstrate that by using individual images' connected structures at different camera pose estimation steps, we can estimate camera poses more accurately from all structured mosaic-based image sets, including omnidirectional scenes.