• Title/Summary/Keyword: mortars

Search Result 437, Processing Time 0.026 seconds

An Experimental Study on Alkali-Silica Reaction of Alkali-Activated Ground Granulated Blast Furnace Slag Mortars (알칼리 활성 고로슬래그 미분말 모르터의 알칼리-실리카 반응에 관한 실험적 연구)

  • Kim, Young-Soo;Moon, Dong-Il;Lee, Dong-Woon
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.4
    • /
    • pp.345-352
    • /
    • 2011
  • The purpose of this study was to investigate the expansion of alkali-activated mortar based on ground granulated blast furnace slag containing reactive aggregate due to alkali-silica reaction. In addition, this study was particularly concerned with the behavior of these alkaline materials in the presence of reactive aggregates. The experimental program included expansion measurement of the mortar bar specimens, as well as the determination of the morphology and composition of the alkali-silica reaction products by using scanning electron microscopy(SEM), and energy dispersive x-ray(EDX). The experiment showed that while alkali-activated ground granulated blast furnace slag mortars showed expansion due to the alkali-silica reaction, the expansion was 0.1% at Curing Day 14, showing that it is safe. After the accelerated test, SEM and BEM analysis showed the presence of alkali-silica gel and rim around the aggregate and cement paste. According to the EDX, the reaction products decreased markedly as alkali-activated ground granulated blast furnace slag was used. In addition, for the substitutive materials of mineral admixture, a further study on improving the quality of alkali-activated ground granulated blast furnace slag is needed to assure of the durability properties of concrete.

Strengths of Rapidly Hardening SBR Cement Mortars as Building Construction Materials According to Admixture Types and Curing Conditions (혼화재 종류 및 양생조건에 따른 속경성 SBR 시멘트 모르타르의 강도)

  • Jo, Young-Kug;Jeong, Seon-Ho;Jang, Duk-Bae
    • Journal of the Korea Institute of Building Construction
    • /
    • v.11 no.6
    • /
    • pp.587-596
    • /
    • 2011
  • Ultra rapid-hardening cement is widely used for latex-modified mortar and concrete as repair and finishing material during urgent work. The purpose of this study is to evaluate the improvements in strength made to SBR cement mortars by the adding of various admixtures and by the use of different curing methods. SBR cement mortar was prepared with various polymer-cement ratios, curing conditions and admixture contents, and tested for flow, flexural and compressive strengths. From the test results, it was determined that the flow of SBR cement mortar increased with an increase in the polymer-cement ratio, and the water reducing ratio also increased. The strength of cement mortar is improved by using SBR emulsion, and is strengthened by adding metakaoline. The strength of SBR cement mortar cured in standard conditions was increased with an increase in the polymer-cement ratio, and attained the maximum strengths at polymer-cement ratios of 15 % and 10 %, respectively. The maximum strengths of SBR cement mortar are about 1.8 and 1.3 times the strengths of plain mortar, respectively. In this study, it is confirmed that the polymer-cement ratio and curing method are important factors for improving the strengths of rapid-hardening SBR cement mortar.

Carbonation Characteristics of Alkali Activated Blast-Furnace Slag Mortar (알칼리활성 고로슬래그 모르타르의 탄산화 특성)

  • Song, Keum-Il;Yang, Keun-Hyeok;Lee, Bang-Yeon;Song, Jin-Kyu
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.315-322
    • /
    • 2012
  • Alkali-activated slag (AAS) is the most obvious alternative materials that can replace OPC. But, AAS industrial usage as a structural material should be evaluated for its durability. Carbonation resistance is one of the most important factors in durability evaluation. Test results for 18 slag-based mortars activated by sodium silicate and 6 OPC mortars were obtained in this study to verify the carbonation property. Main variables considered in the study were flow, compressive strength before and after carbonation, and carbonation depth. Mineralogical and micro-structural analysis of OPC and AAS specimens prior to and after carbonation was conducted using XRD, TGA, FTIR FE-SEM. Test results showed that CHS was major hydration products of AAS and, unlike OPC, no other hydration products were found. After carbonation, CSH of hydration product in AAS turned into an amorphous silica gel, and alumina compounds was not detected. From the analysis of the results, it was estimated that the micro-structures of CSH in AAS easily collapsed during carbonation. Also, the results showed that this collapse of chemical chain of CSH lowered the compressive strength of concrete after carbonation. By increasing the dosage of activators, carbonation resistance and compressive strength were effectively improved.

Hydration Property of Electric Arc Furnace Reduction Slag (전기로(電氣爐) 환원(還元) 슬래그의 수화반응(水和反應) 특성(特性) 연구(硏究))

  • An, Yong-Jun;Han, In-Kyu;Choi, Jae-Seok;Bae, Kwang-Hyun;Kim, Hyung-Seok
    • Resources Recycling
    • /
    • v.19 no.6
    • /
    • pp.93-101
    • /
    • 2010
  • In this study, we have studied hydration properties and compressive strength of the electric arc furnace reduction slag as a cement admixture. The reduction slag is mainly consisted of 17.1% of f-CaO and rapid curing clinker minerals, 37.1% of $C_{11}A_7CaF_2$, and 21.0% of $C_3A$. When the substitution rate of the slag on OPC was 30%, the initial setting time and final setting time has been shortened from 305 min. and 425 min. to 10min. and 30min. When the substitution rate of the slag on OPC was 7%, the compressive strength of mixed cement mortars has been increased than that of OPC during all period. When the substitution rate of the slag on OPC was over 20%, the compressive strength of mortars has been reduced than that of OPC at initial and final compressive strength. As a result of hydration properties of reduction slag, $C_{11}A_7CaF_2$ transfer to $C_3AH_6$ but as the substitution rate of slag on OPC increases, increased f-CaO and the metastable hydrates $C_4AH_{13}$ increased. Therefore, we should control the substitution rate of the slag on OPC was under 7% in order to use EAF reduction slag as a cement admixture.

An Experimental Study on the Improvement of Quality of Mixed Aggregate Using Recycled Aggregate (순환골재 사용 혼합골재의 품질 개선을 위한 실험적 연구)

  • Kim, Jung-Ho;Sung, Jong-Hyun;Kim, Choong-Gyum;Lee, Sea-Hyun;Kim, Han-Soo
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.229-235
    • /
    • 2018
  • In this study, recycled aggregate and natural aggregate were mixed in advance using an aggregate mixing facility that was developed to improve the quality of recycled aggregate concrete. Then the mixed aggregate was applied and concrete characteristics before and after a mix were considered. Based on the findings extracted, this study aimed to suggest a new direction for quality stabilization and application activation of recycled aggregate. The test results of change rates of mortars and coarse aggregates in fresh concrete mixed by a concrete mixer, before and after mixing aggregates showed that the variations of the mortars and coarse aggregates in the concrete mixed with the aggregates beforehand were decreased than those in the concrete before mixing them. The variation of compressive strength and the mean compressive strength at the ages of 3 and 7 days showed similar results before and after the aggregates were mixed, and the strength at the age of 28 days before and after mixing them showed larger deviation than that at the ages of 3 and 7 days. The use of the mixed aggregates after mixing aggregates beforehand reduced the variation in strength and is believed that it is advantageous for long-age strength development. The above results show that the variations of coarse aggregates and compressive strength in the concrete using the mixed aggregates produced by mixing recycled aggregates and natural aggregates beforehand are reduced so it will be possible to produce the homogeneous concrete by mixing aggregates beforehand.

Performance of Recycled Coarse Aggregate Concrete with Nylon Fiber (나일론 섬유를 적용한 순환 굵은골재 콘크리트의 성능 평가)

  • Lee, Seung-Tae
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.2
    • /
    • pp.28-36
    • /
    • 2019
  • The adhered mortars in recycled aggregate may lower the performance of the concrete, such as by reducing in strength and durability, and cracking. In the present study, the effects of nylon fiber (NF) on the mechanical and durable properties of 100% ordinary portland cement (OPC) and 50% ground granulated blast furnace slag (GGBFS) concretes incorporating recycled coarse aggregate (RA) were experimentally investigated. Concrete was produced by adding 0 and $0.6kg/m^3$ of NF and then cured in water for the predetermined period. Measurements of compressive and split tensile strength, water permeable pore and total charge passed through concrete were carried out, and the corresponding test results were compared with those of concrete incorporating crushed coarse aggregate (CA). In addition, the microstructures of 28-day concretes were observed by using SEM technique. Test results revealed that the RA concrete showed lower performance than CA concrete because of the adhered mortars in RA. However, it was obvious that the addition of NF in RA concrete was much effective in enhancing the performance of the concretes due to the bridge effect from NF. In particular, the application of NF2 (19 mm) exhibited a somewhat beneficial effect compared with concrete incorporating NF1 with respect to mechanical properties, especially for RA concrete.

Effect of Phase Change Material on Hydration Heat of Mortar with Fly Ash and Blast Furnace Slag (상전이물질이 플라이애시 및 고로슬래그를 혼입한 모르타르의 수화발열에 미치는 영향)

  • Nam, Yi-Hyun;Jang, Seok-Joon;Kim, Sun-Woong;Park, Wan-Shin;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 2019
  • Phase change material(PCM) has the capacity to absorb or release energy in heat when the phase changes. This study conducted to investigate the effect of strontium-based PCM on the hydration heat and mechanical properties of mortar with fly ash and blast furnace slag. The amounts of PCM were 1%, 2%, 3%, 4%, and 5% by the cementitious materials weight. The tests about mortar flow, semi-adiabatic temperature rise, compressive and flexural strength tests were carried out for twelve types of mortar mixtures. The test results indicated that the use of PCM was effective to reduce hydration heat and retard hydration of mortar with industrial by-products. In particular, the heat generation rate of mortars with fly ash was lower than that of mortars with blast furnace slag. The compressive strength of mortar with fly ash and blast furnace slag were decreased with increasing PCM ratio.

Evaluation Method of Healing Performance of Self-Healing Materials Based on Equivalent Crack Width (등가균열폭에 기반한 자기치유 재료의 치유성능 평가 방법)

  • Lee, Woong-Jong;Kim, Hyung-Suk;Choi, Sung;Park, Byung-Sun;Lee, Kwang-Myong
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.383-388
    • /
    • 2021
  • In this study, constant head water permeability test was adopted to evaluate self-healing performance of mortars containing inorganic healing materials which consist of blast furnace slag, sodium sulfate and anhydrite. Clinker powder and sand replaced for a part of cement and fine aggregates. On constant head water permeability test for self-healing mortars, unit water flow rate of mortar specimens were measured according to crack width and healing period. As a result of evaluating the healing performance of self-healing mortar, it was confirmed that with the initial crack width of 0.3mm, the healing rate at healing period of 28 days increased by more than 30%p compared to plain mortar, greatly improving the healing performance. Furthermore, the coefficient(α) which was estimated from the relationship between crack width and unit water flow rate was used for calculating equivalent crack width. By analyzing the correlation of healing rate and equivalent crack width, the time and initial crack width attaining healing target crack width were predicted.

Properties of Epoxy-Modified Mortars with Alkali Activators and Ground Granulated Blast Furnace Slag (알칼리자극제 및 고로슬래그미분말을 병용한 에폭시수지 혼입 폴리머 시멘트 모르타르의 성질)

  • Kim, Wan-Ki
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.85-92
    • /
    • 2021
  • The purpose of this study is to investigate the properties of hardener-free epoxy-modified mortars(EMMs) using ground granulated blast furnace slag(GGBFS) and alkali activators. The hardener-free EMMs with a GGBFS content of 20% using 4 types of alkali activators were prepared with various polymer-binder ratios, and tested for strengths, water absorption, carbonation depth, chloride ion and H2SO4 penetration depth. The conclusions obtained from the test results are summarized as follows: The compressive strength of the EMMs with a GGBFS content of 20% attains a maximum at a polymer-binder ratio of 10%. The flexural strength of the hardener-free EMMs using Ca(OH)2 as a alkali activator is improved with increasing polymer-binder ratios. However, the flexural strength of the EMMs using NaCO3, Na2SO4 and Li2CO3 is gradually decreased with increasing polymer-binder ratios. Regardless of the type of alkali activator, the water absorption, chloride ion penetration and carbonation depth are remarkably decreased with increasing polymer-binder ratios due to the epoxy film formed in the EMMs. The H2SO4 penetration depth of the hardener-free EMMs with a GGBFS content of 20% is gradually increased with increasing polymer-binder ratio. In this study, the properties of hardener-free EMMs using Ca(OH)2 as a alkali activator are more excellent than those of other alkali activators.

Initial Behavior and Shrinkage Properties of Lime Mortars for Restoration of Cultural Heritage According to the Mixing Ratio (석회 종류와 배합비 별 문화재 보수용 석회 모르타르의 초기거동특성과 수축특성 연구)

  • Nam, Byeong Jik;Noh, Sang Kyun;Kim, Eun Kyung;Ahn, Sun Ah;Kang, So Yeong
    • Journal of Conservation Science
    • /
    • v.36 no.6
    • /
    • pp.456-474
    • /
    • 2020
  • This study investigated the initial behavior (flowability and setting properties) and shrinkage characteristics of lime mortar, based on the mixing ratio of hydrated lime (lump, powder) and commercial lime, which is primarily used for repairing and restoring cultural assets. The flowability showed that the optimum mixing water contents of the masonry lime mortar were 8-10% for the lump hydrated lime, 10-18% for the powdered hydrated lime, and 17-40% for the commercial hydrated lime. The results of the setting and shrinkage analysis showed that the average final setting time ratio compared to the standard of cultural asset repair was in the increasing order of commercial hydrated lime(0.4) < powder hydrated lime(5.6) < lump hydrated lime(5.7). Moreover, the average shrinkage ratio was ordered as lump hydrated lime(1.1) < powder hydrated lime(1.2) < commercial hydrated lime(3.0). The analysis of the physical and chemical characteristics of hydrated lime showed that the optimum mixing water content was reduced as the particle size of the lime increased, thus delaying the setting time and decreasing the length change rate (shrinkage). These results are expected to contribute to the prediction of the initial behavior and shrinkage characteristics of mortars using handmade and commercial lime during repair and restoration work on cultural, heritage buildings.