• Title/Summary/Keyword: morphology controlling

검색결과 184건 처리시간 0.029초

Preparation and Characterization of Poly(lactide-co-glycolide) Micro-spheres for the Sustained Release of AZT

  • Gilson Khang;Lee, Jin-Ho;Lee, Jin-Whan;Cho, Jin-Cheol;Lee, Hai-Bang
    • Macromolecular Research
    • /
    • 제8권2호
    • /
    • pp.80-88
    • /
    • 2000
  • Biodegradable microspheres were prepared with poly(L-lactide-co-glycolide) (PLGA, 75 : 25 by mole ratio) by an oil/oil solvent evaporation method for the sustained release of anti-AIDS virus agent, AZT The microspheres of relatively narrow size distribution (7.6$\pm$ 3.8 ㎛) were obtained by controlling the fabrication conditions. The shape of microspheres prepared was smooth and spherical. The efficiency of AZT loading into the PLGA microsphere was over 93% compared to that below 15% for microspheres by a conventional water/oil/water method. The effects of Preparation conditions on the morphology and in vitro AZT release pattern were investigated. in vitro release studies showed that different release pattern and release rates could be achieved by simply modifying factors in the fabrication conditions such as the type and amount of surfactant, initial amount of loaded drug, the temperature of solvent evaporation, and so on. PLCA microspheres prepared by 5% of initial drug loading, 1.0% (w/w) of surfactant concentration, and 25$\^{C}$ of solvent evaporation temperature were free from initial burst effect and a near-zero order sustained release was observed. Possible mechanisms of the near-zero order sustained release for our system have been proposed.

  • PDF

산화아연 압전 나노전력발전소자 기반 에너지 하베스팅

  • 김상우
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.49-49
    • /
    • 2010
  • Nanopiezotronics is an emerging area of nanotechnology with a variety of applications that include piezoelectric field-effect transistors and diodes, self-powered nanogenerators and biosystems, and wireless nano/biosensors. By exploiting coupled piezoelectric and semiconducting characteristics, it is possible for nanowires, nanobelts, or nanorods to generate rectifying current and potential under external mechanical energies such as body movement (handling, winding, pushing, and bending) and muscle stretching, vibrations (acoustic and ultrasonic waves), and hydraulic forces (body fluid and blood flow). Fully transparent, flexible (TF) nanogenerators that are operated by external mechanical forces will be presented. By controlling the density of the seed layer for ZnO nanorod growth, transparent ZnO nanorod arrays were grown on ITO/PES films, and a TF conductive electrode was stacked on the ZnO nanorods. The resulting integrated TF nanodevice (having transparency exceeding 70 %) generated a noticeable current when it was pushed by application of an external load. The output current density was clearly dependent on the force applied. Furthermore, the output current density depended strongly on the morphology and the work function of the top electrode. ZnO nanorod-based nanogenerators with a PdAu, ITO, CNT, and graphene top electrodes gave output current densities of approximately $1-10\;uA/cm^2$ at a load of 0.9 kgf. Our results suggest that our TF nanogenerators are suitable for self-powered TF device applications such as flexible self-powered touch sensors, wearable artificial skins, fully rollable display mobile devices, and battery supplements for wearable cellular phones.

  • PDF

Supramolecular Hydrogels Instantaneously Formed by Inclusion Complexation between Amphiphilic Oligomers and $\alpha$-Cyclodextrins

  • Zhao, Sanping;Lee, Jong-Hwi
    • Macromolecular Research
    • /
    • 제17권3호
    • /
    • pp.156-162
    • /
    • 2009
  • Supramolecular hydrogels were instantaneously fabricated by mixing aqueous solutions of $\alpha$-cyclodextrins ($\alpha$-CDs) and amphiphilic methoxy (polyethylene glycol) (MPEG)-$\varepsilon$-caprolactone (CL) oligomer, which was synthesized via the ring-opening polymerization of the CL monomer using low-molecular-weight MPEG ($M_n$ of MPEG=2,000 g/mol) as an initiator. The supramolecular structure of the hydrogels was revealed by X-ray diffraction (XRD) analyses. Rheological studies of the hydrogels revealed an elastic character when the number of CL units in the oligomer was more than 2, and the obtained hydrogels showed high storage modulus but relatively low shearing viscosity due to the low-molecular-weight character of the oligomer, which was more preferable for use as an injectable delivery system. The physical properties of the hydrogels could be modulated by controlling the chain morphology and concentration of the oligomers, as well as the feed molar ratio of the oligomer to $\alpha$-CD. The components of the supramolecular hydrogels are biocompatible and can readily be eliminated from the body. These features render the supramolecular hydro gels suitable as drug delivery systems and tissue engineering scaffolds.

MOD 공정에 의해 제조된 YBCO 박막의 압력 의존성 (Total pressure dependence of YBCO films in MOD method)

  • 유재무;정국채;고재웅;김영국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권1호
    • /
    • pp.5-8
    • /
    • 2006
  • The growth properties of MOD-YBCO films were investigated. To enhance the growth rate of YBCO layer and inhibit the build-up of HF gas during the annealing process in TFA-MOD for YBCO coated conductors the method of low pressure annealing was employed. Total pressure was changed from 700Torr to 1Torr and its effect on growth of YBCO films was compared with atmospheric one. The lower Pressure was effective to control of the pore size in MOD method . Surface morphology of YBCO films processed at low total pres sure was rough and composed of random YBCO (103) grains. But large pores, usually observed at atmospheric process in MOD disappeared and also the number of pores was reduced at low pressure annealing. Also discussed ate the effects of Fluorine-free Y and Cu precursor solution on the development of microstructure. Dense surface me phology and with less and small pores can be provided through controlling Fluorine content.

Impact of Wet Etching on the Tribological Performance of 304 Stainless Steel in Hydrogen Compressor Applications

  • Chan-Woo Kim;Sung-Jun Lee;Chang-Lae Kim
    • Tribology and Lubricants
    • /
    • 제40권3호
    • /
    • pp.71-77
    • /
    • 2024
  • Hydrogen has emerged as an eco-friendly and sustainable alternative to fossil fuels. However, the utilization of hydrogen requires high-pressure compression, storage, and transportation, which poses challenges to the durability of compressor components, particularly the diaphragm. This study aims to improve the durability of 304 stainless steel diaphragms in hydrogen compressors by optimizing their surface roughness and corrosion resistance through wet etching. The specimens were prepared by immersing 304 stainless steel in a mixture of sulfuric acid and hydrogen peroxide, followed by etching in hydrochloric acid for various durations. The surface morphology, roughness, and wettability of the etched specimens were characterized using optical microscopy, surface profilometry, and water contact angle measurements. The friction and wear characteristics were evaluated using reciprocating sliding tests. The results showed that increasing the etching time led to the development of micro/nanostructures on the surface, thereby increasing surface roughness and hydrophilicity. The friction coefficient initially decreased with increasing surface roughness owing to the reduced contact area but increased during long-term wear owing to the destruction and delamination of surface protrusions. HCl-30M exhibited the lowest average friction coefficient and a balance between the surface roughness and oxide film formation, resulting in improved wear resistance. These findings highlight the importance of controlling the surface roughness and oxide film formation through etching optimization to obtain a uniform and wear-resistant surface for the enhanced durability of 304 stainless steel diaphragms in hydrogen compressors.

경기만 남부에 발달된 해저지형의 형태적 특징 및 해사채취에 의한 변화 (Morphological Features of Bedforms and their Changes due to Marine Sand Mining in Southern Gyeonggi Bay)

  • 금병철;신동혁;정섬규;장석;장남도;오재경
    • Ocean and Polar Research
    • /
    • 제32권4호
    • /
    • pp.337-350
    • /
    • 2010
  • This study conducted sedimentological and geophysical surveys for 3 years (2006-2008) in southern Gyeonggi Bay, Korea to elucidate temporal changes in subaqueous dune morphology on a sand ridge trending northeast to southwest that has been excavated by marine sand mining. The sand ridge (~20 m in height, ~2 km in width and 3~4 km in length) has a steep slope on the NW side and a gentle slope on the SE side, creating an asymmetric profile. Large (10~100 m in length) and very large (>100 m in length) dunes occurring on the SE side of the ridge show a northeastward asymmetrical shape, whereas dunes on the NW side destroyed by marine sand mining display a southwestward asymmetry. The comparison between Flemming (1988)'s correlation and the height-length correlation of this study indicates that tidal current and availability of sand sediment are major controlling factors to the development and maintenance of dunes. Depth and sedimentary characteristics (grain size) are not likely to be major controlling factors, but indirectly influence dune growth by hydrological and sedimentary processes. The length and the height of dunes decrease toward the southeastern trough away from the crest of the ridge. These features result from the decrease of tidal current and sediment availability. The length and the height of dunes on the southeast side decrease gradually over time. This is a result of the interaction between tidal current and the decrease in sediment availability due to sediment extraction by marine sand mining. Marine sand mining has destroyed the dunes directly, causing irregular shapes of shorter length and lower height. The coarse fraction of suspended sediments is transported and deposited very close to the sand pit. By contrast, relatively fine sediments are transported by the tidal current and deposited over a wide range by the settling-lag effect, resulting in a decrease of sediment grain size in the area where suspended sediments are deposited. In addition, marine sand mining, decreases the height of dunes. Therefore, morphological and sedimentological characteristics of dunes around the sand pits will be significantly changed by future sand mining activities.

시설재배 쑥갓 및 피망의 작물특성에 따른 Boscalid 및 Spinetoram의 잔류량 감소추이 (Residual Dissipation based on Crop Commodities Classification of Boscalid and Spinetoram on Crown Daisy and Sweet Pepper under Green Houses)

  • 황은진;박정은;도정아;정형욱;장희라
    • 한국환경농학회지
    • /
    • 제36권3호
    • /
    • pp.184-192
    • /
    • 2017
  • BACKGROUND: This study was performed to evaluate the residue dissipation of boscalid and spinetoram on crown daisy and sweet pepper affected by the morphology of the crop. The half-lives and dissipation rate constants for boscalid and spinetoram on crown daisy and sweet pepper were calculated. And then lower limit of 95% confidence interval for dissipation rate constant could be used to propose the pre-harvest residue limit. METHODS AND RESULTS: The pesticide products diluted according to the pesticide label were applied one time on crown daisy and sweet pepper at 2 field sites, respectively. Initial concentration of boscalid and spinetoram on crown daisy after application were in the range of 72.80~117.15 mg/kg and 2.82~4.67 mg/kg, respectively. And Initial concentration of boscalid and spinetoram on sweet pepper were in the range of 1.58~1.62 mg/kg and 0.10~0.21 mg/kg, respectively. Boscalid and spinetoram for crown daisy dissipted below the maximum residue limit(MRL) at 10 and 2 days after application, respectively. All residues concentration of boscalid and spinetoram for sweet pepper below the MRL at 0 day after application. The half-lives based on dissipation rate constant for boscalid and spinetoram on crown daisy were 4.2~4.9 days and 3.0~2.4 days respectively. And the half-lives for boscalid and spinetoram on sweet pepper were 6.7~7.0 days and 2.8~4.0 days respectively. CONCLUSION: The difference in initial concentration of boscalid and spinetoram among crop commodities were due to different crop morphology with larger surface areas. This study was suggested that pre-harvest residue limit would be calculated from lower limit of 95% confidence interval for dissipation rate constant and would be useful to protect consumers by controlling the pesticide residues in crop.

수열합성법을 이용한 큐빅과 로드형의 탄산칼슘 합성 (Synthesis of Cubic and Rod Shapes CaCO3 by Hydrothermal Method)

  • 강국현;전상철;현미호;이동규
    • 한국산학기술학회논문지
    • /
    • 제17권6호
    • /
    • pp.255-261
    • /
    • 2016
  • 탄산칼슘은 뛰어난 물리 화학적 특성, 다양한 결정성, 많은 매장량 등으로 인한 경제성 등 때문에 고무, 플라스틱, 종이, 식품 첨가제 및 중화제 등 여러 분야에 걸쳐 응용되고 있다. 특히, 탄산칼슘의 백색도 및 물리적 특성은 입자의 크기 및 형상에 의존하기 때문에 구조 및 형태를 조절하는 연구가 최근 주목 받고 있다. 본 논문은, 수열합성법 및 자기조립법을 이용하여 염화칼슘과 탄산칼슘을 이용해 다양한 형상과 결정구조를 갖는 탄산칼슘을 합성하였다. 탄산칼슘의 구조 및 형태는 pH 및 전구체의 농도를 조절함으로써 제어할 수 있으며, 특히 pH 조절은 탄산칼슘의 형상 조절 및 결정성 변화에 중요한 요인으로 나타났다. 다양한 조건을 통한 실험 결과, 칼사이트 결정형을 가지며 큐빅 형상을 지닌 탄산칼슘은 pH 7에서 나타났고, 아라고나이트와 칼사이트상을 동시에 가지며 로드형상을 갖는 탄산칼슘 입자는 pH 7 이상에서 나타났다. 연구 결과 입자의 생성과정 분석을 통해 탄산칼슘 입자의 형성 과정을 확인할 수 있었다. 탄산칼슘의 물리 화학적 특성은 SEM, XRD, EDS, FTIR 및 TG/DTA를 통해 확인하였다.

무전해 니켈 도금된 폴리스티렌 복합 입자 제조 및 도금 조건의 영향 (Preparation of Composite Particles via Electroless Nickel Plating on Polystyrene Microspheres and Effect of Plating Conditions)

  • 김병철;박진홍;이성재
    • 폴리머
    • /
    • 제34권1호
    • /
    • pp.25-31
    • /
    • 2010
  • 무전해 니켈 도금법을 사용하여 단분산 폴리스티렌 입자 표면에 니켈이 도금된 고분자 코어/금속 쉘의 복합 입자를 제조하였다. 단분산 입자는 분산중합으로 제조하였는데 사용한 분산매질의 종류에 따라 다양한 크기의 단분산 폴리스티렌 입자를 제조할 수 있었다. 그 중 직경 $3.4\;{\mu}m$ 크기의 단분산 폴리스티렌 입자를 선택하여 무전해 니켈 도금을 시도하였다. 니켈 도금에 영향을 미치는 도금 조건을 파악하기 위하여 활성화제인 $PdCl_2$의 농도, 착화제인 glycine의 농도와 니켈 도금액의 투여 시간에 따른 니켈 도금된 폴리스티렌 복합 입자의 모폴로지를 관찰하였다. 본 연구조건하에서는 $PdCl_2$의 농도 0.4 g/L, glycine 농도 1 M 이상인 경우 폴리스티렌 입자 위에 균일한 두께의 니켈층을 형성하였고 석출되는 니켈도 적었다. 도금 시간 2 시간 중에서 동일양의 도금액을 투여 속도를 달리하며 도금한 경우 모폴로지 상의 뚜렷한 차이는 없었으나 0.15 mL/min 속도로 1시간 동안 투여한 경우가 상대적으로 균일한 도금 특성을 보여 주었다.

광역학적/광열치료 응용을 위한 광증감제가 결합한 골드 나노로드의 합성 및 특성분석 (Synthesis and Characterization of Photosensitizer-conjugated Gold Nanorods for Photodynamic/Photothermal Therapy)

  • 최종선;김소연
    • 공업화학
    • /
    • 제27권6호
    • /
    • pp.599-605
    • /
    • 2016
  • 최근 효과적인 암 치료 방법으로 광역학치료(photodynamic therapy)와 광열치료(photothermal therapy)가 주목받고 있다. 본 연구에서는 광열치료에 필요한 광열인자로써의 역할을 할 수 있는 골드 나노로드(AuNR)를 합성하고, 그 표면에 광역학치료를 위한 광증감제(photosensitizer)를 결합하였다. 즉, 골드 나노로드를 체내에 오래 머무르도록 하기 위해 PEG(polyethylene glycol) 및 효과적인 암 표적지향성을 위해 FA (folic acid) 리간드를 도입하였고, FA-PEG와 poly-${\beta}$-benzyl-L-aspartate (PBLA)로 이루어진 블록 공중합체를 3,4-dihydroxy hydrocinnamic acid (HCA) linker를 사용하여 골드 나노로드의 표면개질을 하였다. 또한 $AgNO_3$의 feeding ratio 변화를 통해 다양한 aspect ratio를 갖는 골드 나노로드를 합성하였고, UV-visible spectrophotometer, $^1H$-NMR, XPS, TEM 분석을 통해 FA-PEG-$P(Asp)_{50}$-HCA-AuNR100의 물리 화학적 특성과 morphology를 분석하였고, 성공적인 표면 개질을 확인할 수 있었다. 골드 나노로드의 표면 개질을 통한 생체 적합성 약물전달체의 합성은 효과적인 암 진단 및 다양한 광역학/광열치료 분야에 응용이 될 수 있을 것으로 기대된다.