• Title/Summary/Keyword: monthly precipitation

Search Result 381, Processing Time 0.027 seconds

Spatial Downscaling of Precipitation from GCMs for Assessing Climate Change over Han River and Imjin River Watersheds

  • Jang, S.;Hwang, M.;Hur, Y. T.;Yi, J.
    • International conference on construction engineering and project management
    • /
    • 2015.10a
    • /
    • pp.738-739
    • /
    • 2015
  • The main objective of this study, "Spatial Downscaling of Precipitation from GCMs for Assessing Climate Change over Han River and Imjin River Watersheds", is to carry out over Han River and Imjin River watersheds. To this end, a statistical regression method with MOS (Model Output Statistics) corrections at every downscaling step was developed and applied for downscaling the spatially-coarse Global Climate Model Projections (GCMPs) from CCSM3 and CSIRO with respect to precipitation into 0.1 degree (about 11 km) spatial grid over study regions. The spatially archived hydro-climate data sets such as Willmott, GsMap and APHRODITE datasets were used for MOS corrections by means of monthly climatology between observations and downscaled values. Precipitation values downscaled in this study were validated against ground observations and then future climate simulation results on precipitation were evaluated for the projections.

  • PDF

Analysis of Hydrologic Time Series Using Wavelet Transform (Wavelet Transform을 이용한 수문시계열 분석)

  • Kwon, Hyun-Han;Moon, Young-Il
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.6 s.155
    • /
    • pp.439-448
    • /
    • 2005
  • This paper introduces the wavelet transform that was improved by the fourier transform to assess periodicities and trends, we assessed propriety with examples of two monthly precipitation data, annual precipitation, SOI index and SST index. The wavelet transform can effectively assess the power spectrum corresponding to frequency as maintaining chronological characteristics. The results of the analysis using the wavelet transform showed that the monthly precipitation have the strongest power spectrum near that of 1 year, and the annual precipitation represent the dominated spectrum in the band of 2-8 years. Also, the SOI index and SST index indicate the strongest power spectrum in the band of 2-8 years.

Estimation of Monthly Precipitation in North Korea Using PRISM and Digital Elevation Model (PRISM과 상세 지형정보에 근거한 북한지역 강수량 분포 추정)

  • Kim, Dae-Jun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.13 no.1
    • /
    • pp.35-40
    • /
    • 2011
  • While high-definition precipitation maps with a 270 m spatial resolution are available for South Korea, there is little information on geospatial availability of precipitation water for the famine - plagued North Korea. The restricted data access and sparse observations prohibit application of the widely used PRISM (Parameter-elevation Regressions on Independent Slopes Model) to North Korea for fine-resolution mapping of precipitation. A hybrid method which complements the PRISM grid with a sub-grid scale elevation function is suggested to estimate precipitation for remote areas with little data such as North Korea. The fine scale elevation - precipitation regressions for four sloping aspects were derived from 546 observation points in South Korea. A 'virtual' elevation surface at a 270 m grid spacing was generated by inverse distance weighed averaging of the station elevations of 78 KMA (Korea Meteorological Administration) synoptic stations. A 'real' elevation surface made up from both 78 synoptic and 468 automated weather stations (AWS) was also generated and subtracted from the virtual surface to get elevation difference at each point. The same procedure was done for monthly precipitation to get the precipitation difference at each point. A regression analysis was applied to derive the aspect - specific coefficient of precipitation change with a unit increase in elevation. The elevation difference between 'virtual' and 'real' surface was calculated for each 270m grid points across North Korea and the regression coefficients were applied to obtain the precipitation corrections for the PRISM grid. The correction terms are now added to the PRISM generated low resolution (~2.4 km) precipitation map to produce the 270 m high resolution map compatible with those available for South Korea. According to the final product, the spatial average precipitation for entire territory of North Korea is 1,196 mm for a climatological normal year (1971-2000) with standard deviation of 298 mm.

Spatial Distribution Modeling of Daily Rainfall Using Co-Kriging Method (Co-kriging 기법을 이용한 일강우량 공간분포 모델링)

  • Hwang Sye-Woon;Park Seung-Woo;Jang Min-Won;Cho Young-Kyoung
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.8 s.169
    • /
    • pp.669-676
    • /
    • 2006
  • Hydrological factors, especially the spatial distribution of interpretation on precipitation is often topic of interest in studying of water resource. The popular methods such as Thiessen method, inverse distance method, and isohyetal method are limited in calculating the spatial continuity and geographical characteristics. This study was intended to overcome those limitations with improved method that will yield higher accuracy. The monthly and yearly precipitation data were produced and compared with the observed daily precipitation to find correlation between them. They were then used as secondary variables in Co-kriging method, and the result was compared with the outcome of existing methods like inverse distance method and kriging method. The comparison of the data showed that the daily precipitation had high correlation with corresponding year's average monthly amounts of precipitation and the observed average monthly amounts of precipitation. Then the result from the application of these data for a Co-kriging method confirmed increased accuracy in the modeling of spatial distribution of precipitation, thus indirectly reducing inconsistency of the spatial distribution of hydrological factors other than precipitation.

Downscaling Technique of Monthly GCM Using Daily Precipitation Generator (일 강수발생모형을 이용한 월 단위 GCM의 축소기법에 관한 연구)

  • Kyoung, Min Soo;Lee, Jung Ki;Kim, Hung Soo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.5B
    • /
    • pp.441-452
    • /
    • 2009
  • This paper describes the evaluation technique for climate change effect on daily precipitation frequency using daily precipitation generator that can use outputs of the climate model offered by IPCC DDC. Seoul station of KMA was selected as a study site. This study developed daily precipitation generation model based on two-state markov chain model which have transition probability, scale parameter, and shape parameter of Gamma-2 distribution. Each parameters were estimated from regression analysis between mentioned parameters and monthly total precipitation. Then the regression equations were applied for computing 4 parameters equal to monthly total precipitation downscaled by K-NN to generate daily precipitation considering climate change. A2 scenario of the BCM2 model was projected based on 20c3m(20th Century climate) scenario and difference of daily rainfall frequency was added to the observed rainfall frequency. Gumbel distribution function was used as a probability density function and parameters were estimated using probability weighted moments method for frequency analysis. As a result, there is a small decrease in 2020s and rainfall frequencies of 2050s, 2080s are little bit increased.

Study on Temporal and Spatial Characteristics of Summertime Precipitation over Korean Peninsula (여름철 한반도 강수의 시·공간적 특성 연구)

  • In, So-Ra;Han, Sang-Ok;Im, Eun-Soon;Kim, Ki-Hoon;Shim, JaeKwan
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.159-171
    • /
    • 2014
  • This study investigated the temporal and spatial characteristics of summertime (June-August) precipitation over Korean peninsula, using Korea Meteorological Administration (KMA)is Automated Synoptic Observing System (ASOS) data for the period of 1973-2010 and Automatic Weather System (AWS) data for the period of 1998-2010.The authors looked through climatological features of the summertime precipitation, then examined the degree of locality of the precipitation, and probable precipitation amount and its return period of 100 years (i.e., an extreme precipitation event). The amount of monthly total precipitation showed increasing trends for all the summer months during the investigated 38-year period. In particular, the increasing trends were more significant for the months of July and August. The increasing trend of July was seen to be more attributable to the increase of precipitation intensity than that of frequency, while the increasing trend of August was seen to be played more importantly by the increase of the precipitation frequency. The e-folding distance, which is calculated using the correlation of the precipitation at the reference station with those at all other stations, revealed that it is August that has the highest locality of hourly precipitation, indicating higher potential of localized heavy rainfall in August compared to other summer months. More localized precipitation was observed over the western parts of the Korean peninsula where terrain is relatively smooth. Using the 38-years long series of maximum daily and hourly precipitation as input for FARD2006 (Frequency Analysis of Rainfall Data Program 2006), it was revealed that precipitation events with either 360 mm $day^{-1}$ or 80 mm $h^{-1}$ can occur with the return period of 100 years over the Korean Peninsula.

PRISM-KNU Development and Monthly Precipitation Mapping in South Korea (PRISM-KNU의 개발과 남한 월강수량 분포도 작성)

  • PARK, Jong-Chul;KIM, Man-Kyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.2
    • /
    • pp.27-46
    • /
    • 2016
  • In this study, the parameter-elevation regressions on independent slopes model-Kongju National University(PRISM-KNU) system was developed to interpolate monthly precipitation data. One of the features of PRISM-KNU is that it can adjust the allowable range of slope according to the elevation range in the equation representing a linear relationship between the precipitation and elevation. The parameter value of the model was determined by using the optimization technique, and the result was applied to produce monthly precipitation data with a spatial resolution of $1{\times}1km$ from 2000 to 2014 in South Korea. In the result, the Kling-Gupta Efficiency for model evaluation was over 0.7 in 86% of the total cases simulated. In addition, a dramatic change in the spatial pattern of precipitation data was observed in the output of the Modified Korean PRISM, but such a phenomenon did not occur in the output of the PRISM-KNU. This study confirmed the appropriateness of the PRISM-KNU, and the result showed that the spatial consistency of the data produced by the model improved compared with that produced by the Modified Korean PRISM. It is expected that the PRISM-KNU and its output will be utilized in various studies in the future.

Estimation of Markov Chain and Gamma Distribution Parameters for Generation of Daily Precipitation Data from Monthly Data (월 자료로부터 일 강수자료 생성을 위한 Markov 연쇄 및 감마분포 모수 추정)

  • Moon, Kyung Hwan;Song, Eun Young;Son, In Chang;Wi, Seung Hwan;Oh, Soonja;Hyun, Hae Nam
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.1
    • /
    • pp.27-35
    • /
    • 2017
  • This research was to elucidate the generation method of daily precipitation data from monthly data. We applied a combined method of Markov chain and gamma distribution function using 4 specific parameters of ${\alpha}$, ${\beta}$, p(W/W) and p(W/D) for generation of daily rainfall data using daily precipitation data for the past 30 years which were collected from the country's 23 meteorological offices. Four parameters, applied to use for the combination method, were calculated by maximum likelihood method in location of 23 sites. There are high correlations of 0.99, 0.98 and 0.98 in rainfall days, rainfall probability and mean amount of daily rainfall between measured and simulated data in case of those parameters. In case of using parameters estimated from monthly precipitation, correlation coefficients in rainfall days, rainfall probability and mean amount of daily rainfall are 0.84, 0.83 and 0.96, respectively. We concluded that a combination method with parameter estimation from monthly precipitation data can be applied, in practical purpose such as assessment of climate change in agriculture and water resources, to get daily precipitation data in Korea.

Introduction for the Necessity and Application Example of the Village-based AWS (마을 단위 AWS 구축의 필요성 및 적용사례 소개)

  • Jo, Won Gi;Kang, Dong-hwan;Kim, MoonSu;Shin, In-Kyu;Kim, HyunKoo
    • Journal of Environmental Science International
    • /
    • v.29 no.10
    • /
    • pp.1003-1010
    • /
    • 2020
  • In this study, the necessity for a village unit Automatic Weather System (AWS) was suggested to obtain correct agricultural weather information by comparing the data of AWS of the weather station with the data of AWS installed in agricultural villages 7 km away. The comparison sites are Hyogyo-ri and Hongseong weather station. The seasonal and monthly averaged and cumulative values of data were calculated and compared. The annual time series and correlation was analyzed to determine the tendency of variation in AWS data. The average values of temperature, relative humidity and wind speed were not much different in comparison with each season. The difference in precipitation was ranged from 13.2 to 91.1 mm. The difference in monthly precipitation ranged from 1.2 to 75.4 mm. The correlation coefficient between temperature, humidity and wind speed was ranged from 0.81 to 0.99 and it of temperature was the highest. The correlation coefficient of precipitation was 0.63 and the lowest among the observed elements. Through this study, precipitation at the weather station and village unit area showed the low correlation and the difference for a quantitative comparison, while the elements excluding precipitation showed the high correlation and the similar annual variation pattern.

Sensitivity of Indian Summer Monsoon Precipitation to Parameterization Schemes

  • Singh, G.P.
    • The Korean Journal of Quaternary Research
    • /
    • v.24 no.1
    • /
    • pp.1-10
    • /
    • 2010
  • The Indian summer monsoon behaved an abnormal way in 2002 and as a result there was a large deficiency in precipitation (especially in July) over a large part of the Indian subcontinent. For the study of deficient monsoon of 2002, a recent version of the NCAR regional climate model (RegCM3) has been used to examine the important features of summer monsoon circulations and precipitation during 2002. The main characteristics of wind fields at lower level (850 hPa) and upper level (200 hPa) and precipitation simulated with the RegCM3 over the Indian subcontinent are studied using different cumulus parameterization schemes namely, mass flux schemes, a simplified Kuo-type scheme and Emanuel (EMU) scheme. The monsoon circulation features simulated by RegCM3 are compared with the NCEP/NCAR reanalysis and simulated precipitation is validated against observation from the Global Precipitation Climatology Centre (GPCC). Validation of the wind fields at lower and upper levels show that the use of Arakawa and Schubert (AS) closure in Grell convection scheme, a Kuo type and Emanuel schemes produces results close to the NCEP/NCAR reanalysis. Similarly, precipitation simulated with RegCM3 over different homogeneous zones of India with the AS closure in Grell is more close to the corresponding observed monthly and seasonal values. RegcM3 simulation also captured the spatial distribution of deficient rainfall in 2002.

  • PDF