• Title/Summary/Keyword: monotonic solution

Search Result 39, Processing Time 0.022 seconds

Numerical data-driven machine learning model to predict the strength reduction of fire damaged RC columns

  • HyunKyoung Kim;Hyo-Gyoung Kwak;Ju-Young Hwang
    • Computers and Concrete
    • /
    • v.32 no.6
    • /
    • pp.625-637
    • /
    • 2023
  • The application of ML approaches in determining the resisting capacity of fire damaged RC columns is introduced in this paper, on the basis of analysis data driven ML modeling. Considering the characteristics of the structural behavior of fire damaged RC columns, the representative five approaches of Kernel SVM, ANN, RF, XGB and LGBM are adopted and applied. Additional partial monotonic constraints are adopted in modelling, to ensure the monotone decrease of resisting capacity in RC column with fire exposure time. Furthermore, additional suggestions are also added to mitigate the heterogeneous composition of the training data. Since the use of ML approaches will significantly reduce the computation time in determining the resisting capacity of fire damaged RC columns, which requires many complex solution procedures from the heat transfer analysis to the rigorous nonlinear analyses and their repetition with time, the introduced ML approach can more effectively be used in large complex structures with many RC members. Because of the very small amount of experimental data, the training data are analytically determined from a heat transfer analysis and a subsequent nonlinear finite element (FE) analysis, and their accuracy was previously verified through a correlation study between the numerical results and experimental data. The results obtained from the application of ML approaches show that the resisting capacity of fire damaged RC columns can effectively be predicted by ML approaches.

ALTERNATED INERTIAL RELAXED TSENG METHOD FOR SOLVING FIXED POINT AND QUASI-MONOTONE VARIATIONAL INEQUALITY PROBLEMS

  • A. E. Ofem;A. A. Mebawondu;C. Agbonkhese;G. C. Ugwunnadi;O. K. Narain
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.131-164
    • /
    • 2024
  • In this research, we study a modified relaxed Tseng method with a single projection approach for solving common solution to a fixed point problem involving finite family of τ-demimetric operators and a quasi-monotone variational inequalities in real Hilbert spaces with alternating inertial extrapolation steps and adaptive non-monotonic step sizes. Under some appropriate conditions that are imposed on the parameters, the weak and linear convergence results of the proposed iterative scheme are established. Furthermore, we present some numerical examples and application of our proposed methods in comparison with other existing iterative methods. In order to show the practical applicability of our method to real word problems, we show that our algorithm has better restoration efficiency than many well known methods in image restoration problem. Our proposed iterative method generalizes and extends many existing methods in the literature.

Axial Load Performance of Circular CFT Columns with Concrete Encasement (콘크리트피복 원형충전강관 기둥의 압축성능)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.6
    • /
    • pp.525-536
    • /
    • 2015
  • An experimental study was performed to investigate the axial-flexural load-carrying capacity of concrete-encased and-filled steel tube (CEFT) columns. To restrain local buckling of longitudinal bars and to prevent premature failure of the thin concrete encasement, the use of U-cross ties was proposed. Five eccentrically loaded columns were tested by monotonic compression. The test parameters were axial-load eccentricity, spacing of ties, and the use of concrete encasement. Although early cracking occurred in the thin concrete encasement, the maximum axial loads of the CEFT specimens generally agreed with the strengths predicted considering the full contribution of the concrete encasement. Further, due to the effect of the circular steel tube, the CEFT columns exhibited significant ductility. The applicability of current design codes to the CEFT columns was evaluated in terms of axial-flexural strength and flexural stiffness.

An Experimental Study on the Behaviours of Hollow CFT Column Subjected to Axial Load (중공 콘크리트충전 각형강관 기둥의 거동에 관한 연구 (I. 중심 압축실험))

  • Kim, Cheol-Hwan;Kim, Jong-Kil
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.3 s.21
    • /
    • pp.69-76
    • /
    • 2006
  • Concrete Filled Steel Tube (CFT) system is advantageous because it increases the load-carrying capacity without increasing the size of column. However CFT system has many benefits, it is not applied to field generally because of its heavyweight and difficulty of concrete filling method. As a solution to these problems, we proposed concrete filled steel tube column with hollow made by factory-manufactured PC method. The hollow concrete filled steel tube system is expected to obtain the high strength and high capacity of deformation despite it is a lightweight. This study deals with mechanical properties, strength and deformation, of hollow concrete filled steel tube subjected to axial load. 9 specimens were tested to examine mechanical properties closely, and the following results were obtained: All specimens basically showed higher initial rigidity and maximum strength with increased concrete filling rate. And most specimens showed almost linear behavior until around 80% of maximum strength regardless of filling rate, it is estimated that the elastic range is up to a half of the maximum strength which is the yield strength level.

  • PDF

Verification of NASCOM : Nonlinear Finite Element Analysis for Structural Concrete (NASCOM에 의한 실험결과 예측)

  • 조순호
    • Magazine of the Korea Concrete Institute
    • /
    • v.8 no.3
    • /
    • pp.187-195
    • /
    • 1996
  • A finite element formulation based on the CFT(Compression Field Theory), considering the effect of compression softening in cracked concrete, and macro-scopic and rotating crack models etc., was presented for the nonlinear behaviour of structural concrete. Considering the computational efficency and the ability of modelling the post-ultimate behaviour as major concerns, the Incremental displacement solution algorithm involving initial material stiffnesses and the relaxation procedure for fast convergence was adopted and formulated in a type of 8-noded quadrilateral isoparametric elements. The analysis program NASCOM(Non1inear Analysis of Structural Concrete by FEM : Monotonic Loading) developed in this way enables the predictions of strength and deformation capacities in a full range, crack patterns and their corresponding widths, and yield extents of reinforcement. As the verification purpose of NASCOM, the predictions were made for Bhide's Panel(PB21) and Leonhardt's deep beam tests. The predicted results shows somewhat stiff behaviour for the panel test, and vice versa for deep beam tests. More refining process would be necessary hereafter in terms of more accurately simulating the effects of tension-stiffening and compression softening in concrete.

Axial Load Test on Rectangular CFT Columns using High-Strength Steel and Slender Section (세장 단면의 고강도 강관을 적용한 각형 CFT 기둥의 압축실험)

  • Lee, Ho Jun;Park, Hong Gun;Choi, In Rak
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.2
    • /
    • pp.219-229
    • /
    • 2015
  • An experimental study was performed for thin-walled rectangular concrete-filled tubular (CFT) columns. The present study mainly focused on evaluation of the axial load-carrying capacity of concrete-filled tubular columns using high-strength steel and slender section. The test parameters were width-to-thickness ratio, concrete strength, steel yield strength, and the use of stiffeners. Five specimens were tested under monotonic axial loading. Although elastic local buckling occurred in the slender-section specimens with high-strength steel, the specimens exhibited considerable post-buckling reserve. The test results also satisfied the predictions of a current design code. The specimens strengthened with vertical stiffeners exhibited improved strength and ductility when compared with the un-stiffened specimens.

Study on the Improvement of the Convective Differencing Scheme for the High-Accuracy and Stable Resolution of the Numerical Solution (수치해의 정확성과 안정성이 보장되는 대류항 미분법 개선에 관한 연구)

  • 신종근;최영돈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.6
    • /
    • pp.1179-1194
    • /
    • 1992
  • QUICKER scheme has several attractive properties. However, under highly convective conditions, it produces overshoots and possibly some oscillations on each side of steps in the dependent variable when the flow is convected at an angle oblique to the grid line. Fortunately, it is possible to modify the QUICKER scheme using non-linear and linear functional relationship. Details of the development of polynomial upwinding scheme are given in this paper, where it is seen that this non-linear scheme has also third order accuracy. This polynomial upwinding scheme is used as the basis for the SHARPER and SMARTER schemes. Another revised scheme was developed by partial modification of QUICKER scheme using CDS and UPWIND schemes(QUICKUP). These revised schemes are tested at the well known bench mark flows, Two-Dimensional Pure Convection Flows in Oblique-Step, Lid Driven Cavity Flows and Buoyancy Driven Cavity Flows. For pure convection oblique step flow test problem, QUICKUP, SMARTER and SHARPER schemes remain absolutely monotonic without overshoot and oscillation. QUICKUP scheme is more accurate than any other scheme in their relative accuracy. In high Reynolds number Lid Driven Cavity Flow, SMARTER and SHARPER schemes retain lower computational cost than QUICKER and QUICKUP schemes, but computed velocity values in the revised schemes produced less predicted values than QUICKER scheme which is strongly effected by overshoot and undershoot values. Also, in Buoyancy Driven Cavity Flow, SMARTER, SHARPER and QUICKUP schemes give acceptable results.

Characteristics of CFRP strengthened tubular joints subjected to different monotonic loadings

  • Prashob, P.S.;Shashikala, A.P.;Somasundaran, T.P.
    • Steel and Composite Structures
    • /
    • v.32 no.3
    • /
    • pp.361-372
    • /
    • 2019
  • Tubular joints are used in the construction of offshore structures and other land-based structures because of its ease of fabrication. These joints are subjected to different environmental loadings in their lifetime. At the time of fabrication or modification of an existing offshore platform, tubular joints are usually strengthened to withstand the environmental loads. Currently, various strengthening techniques such as ring stiffeners, gusset plates are employed to strengthen new and existing tubular joints. Due to some limitations with the present practices, some new techniques need to be addressed. Many researchers used Fibre Reinforced Polymer (FRP) to strengthen tubular joints. Some of the studies were focused on axial compression of Glass Fibre Reinforced Polymer (GFRP) strengthened tubular joints and found that it was an efficient technique. Earlier, the authors had performed studies on Carbon Fibre Reinforced Polymer (CFRP) strengthened tubular joint subjected to axial compression. The study steered to the conclusion that FRP composites is an alternative strengthening technique for tubular joints. In this work, the study was focused on axial compression of Y-joint and in plane and out of plane bending of T-joints. Experimental investigations were performed on these joints, fabricated from ASTM A106 Gr. B steel. Two sets of joints were fabricated for testing, one is a reference joint and the other is a joint strengthened with CFRP. After performing the set of experiments, test results were then compared with the numerical solution in ANSYS Parametric Design Language (APDL). It was observed that the joints strengthened with CFRP were having improved strength, lesser surface displacement and ovalization when compared to the reference joint.

Evaluation of Horizontal Load and Moment Capacities of Bucket-Type Offshore Wind Turbine Foundation (버켓형식 해상풍력기초의 수평 하중과 모멘트 저항력 평가)

  • Bagheri, Pouyan;Yoon, Jong Chan;Son, Su Won;Kim, Jin Man
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.1
    • /
    • pp.5-12
    • /
    • 2021
  • Owing to economically efficient and easy installation, bucket foundation is a promising solution for offshore wind turbines. This paper aims at finding the behavior of suction caissons and soil surrounding the foundation by using three-dimensional finite element analysis. Under various loading conditions, a wide range of foundation geometries installed in dense and medium dense sandy soil was considered to evaluate ultimate horizontal load and overturning moment capacity. The results show that the rotation and displacement of the bucket due to monotonic loading are largely dependent on the foundation geometry, soil density and load eccentricity. Normalized diagrams and equations for the ultimate horizontal load and overturning moment capacities are presented that are useful tool for the preliminary design of such foundation type.