• Title/Summary/Keyword: monotonic loading test

Search Result 176, Processing Time 0.035 seconds

A Concrete Model for Analysis of Concrete Structure with Confinement (구속응력을 받는 콘크리트 구조물 해석을 위한 콘크리트 구성모델)

  • Kwon, Min-Ho;Cho, Chang-Geun
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.3
    • /
    • pp.433-442
    • /
    • 2003
  • This paper presents a hypoplastic model for three-dimensional analysis of concrete structures under monotonic, cyclic, proportional and non-proportional loading. The constitutive model is based on the concept of equivalent uniaxial strains that allows the assumed orthotropic model to be described via three equivalent uniaxial stress-strain curves. The characteristics of these curves are obtained from the ultimate strength surface in the principal stress space based on the Willam-Warnke curve. A cap model is added to consider loading along or near the hydrostatic axis. The equivalent uniaxial curve is based on the Popovics and Saenz models. The post-peak behavior is adjusted to account for the effects of confinement and to describe the change in response from brittle to ductile as the lateral confinement increases. Correlation studies with available experimental tests are presented to demonstrate the model performance. Tests with monotonic loading on specimens under constant lateral confinement are considered first, followed by biaxial and triaxial tests with cyclic loads. The triaxial test example considers non-proportional loading.

Bond Stress-Slip Model of Reinforced Concrete Member under Repeated Loading (반복하중을 받는 철근콘크리트 부재의 부착응력-슬립 모델)

  • Oh, Byung-Hwan;Kim, Se-Hoon;Kim, Ji-Sang
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.104-107
    • /
    • 2004
  • The crack widths of reinforced concrete flexural members are influenced by repetitive fatigue loadings. The bond stress-slip relation is necessary to estimate these crack widths realistically. The purpose of the present study is, therefore, to propose a realistic model for bond stress-slip relation under repeated loading. To this end, several series of tests were conducted to explore the bond-slip behavior under repeated loadings. Three different bond stress levels with various number of load cycles were considered in the tests. The present tests indicate that the bond strength and the slip at peak bond stress are not influenced much by repeated loading if bond failure does not occur. However, the values of loaded slip and residual slip increase with the increase of load cycles. The bond stress after repeated loading approaches the ultimate bond stress under monotonic loading and the increase of bond stress after repeated loading becomes sharper as the number of repeated loads increases. The bond stress-slip relation after repeated loading was derived as a function of residual slip, bond stress level, and the number of load cycles. The models for slip and residual slip were also derived from the present test data. The number of cycles to bond slip failure was derived on the basis of safe fatigue criterion, i.e. maximum slip criterion at ultimate bond stress.

  • PDF

The Effect on the Extension Distances of Beam-Column Joint with High and Low Strength Concrete (고강도와 보통강도 콘크리트를 사용한 보-기둥 접합부의 내민길이에 따른 구조적 거동)

  • 이광수;안종문;문정일;박희민;장일영;신성우
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.04a
    • /
    • pp.90-94
    • /
    • 1992
  • ACI318-89 Recommened that when the specified compressive strength of concrete in a column is greater than 1.4 times that specified for a floor system, top surface of the column concrete shall extend 2ft (600mm) into the slab from the face of column to avoid unexpected brittle failure. The major variables are extension distance, compressive strength of concrete (f'c), shear confinement ratio(Vs), and loading types. The test results showed that the load capacity of the specimen subjected to monotonic loading had more than that of the specimen subjected to one way cyclic loadings. The failure models of specimens under cyclic loading were concentrated at 5∼20cm apart region from beam-column joint face. Ducility index(μf) are increased with increasing of shear confinement ratio. The specimen with 2ft extension distance shows more ductility than specimen with lft extension distance.

  • PDF

Constitutive models of concrete structures subjected to seismic shear

  • Laskar, Arghadeep;Lu, Liang;Qin, Feng;Mo, Y.L.;Hsu, Thomas T.C.;Lu, Xilin;Fan, Feng
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.627-645
    • /
    • 2014
  • Using OpenSees as a framework, constitutive models of reinforced, prestressed and prestressed steel fiber concrete found by the panel tests have been implemented into a finite element program called Simulation of Concrete Structures (SCS) to predict the seismic behavior of shear-critical reinforced and prestressed concrete structures. The developed finite element program was validated by tests on prestressed steel fiber concrete beams under monotonic loading, post tensioned precast concrete column under reversed cyclic loading, framed shear walls under reversed cyclic loading or shaking table excitations, and a seven-story wall building under shake table excitations. The comparison of analytical results with test outcomes indicates good agreement.

Study on stiffness deterioration in steel-concrete composite beams under fatigue loading

  • Wang, Bing;Huang, Qiao;Liu, Xiaoling;Ding, Yong
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.499-509
    • /
    • 2020
  • The purpose of this paper is to investigate the degradation law of stiffness of steel-concrete composite beams after certain fatigue loads. First, six test beams with stud connectors were designed and fabricated for static and fatigue tests. The resultant failure modes under different fatigue loading cycles were compared. And an analysis was performed for the variations in the load-deflection curves, residual deflections and relative slips of the composite beams during fatigue loading. Then, the correlations among the stiffness degradation of each test beam, the residual deflection and relative slip growth during the fatigue test were investigated, in order to clarify the primary reasons for the stiffness degradation of the composite beams. Finally, based on the stiffness degradation function under fatigue loading, a calculation model for the residual stiffness of composite beams in response to fatigue loading cycles was established by parameter fitting. The results show that the stiffness of composite beams undergoes irreversible degradation under fatigue loading. And stiffness degradation is associated with the macrobehavior of material fatigue damage and shear connection degradation. In addition, the stiffness degradation of the composite beams exhibit S-shaped monotonic decreasing trends with fatigue cycles. The general agreement between the calculation model and experiment shows good applicability of the proposed model for specific beam size and fatigue load parameters. Moreover, the research results provide a method for establishing a stiffness degradation model for composite beams after fatigue loading.

An Effect of Steel Corrosion on Bond Stress-slip Relationship under Repeated Loading (반복하중하의 부착응력-슬립 관계에 미치는 철근 부식의 영향)

  • Kim, Chul-Min;Park, Jong-Bum;Chang, Sung-Pil;Kim, Jee-Sang
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.179-186
    • /
    • 2010
  • The bond between steel and concrete in reinforced concrete members is essential to resist external load, but the bond mechanism in reinforced concrete beams deteriorated by steel corrosion has not been clearly known yet. Most existing researches have dealt with the bond behavior of corroded steel under monotonic loading, but scarce are researches dealing with bond behavior of corroded steel under repeated loading. This study includes the experimental investigation on the bond behavior with respect to the various degrees of steel corrosion under repeated loading. According to the test results, the bond strength of corroded steel under monotonic loading increases as the rate of steel corrosion increases unless the splitting crack occurs. The slip versus number of load cycles relation was found to be approximately linear in double logarithmic scale, not only in specimens without steel corrosion but also in specimens with steel corrosion. The test results also show that the steel corrosion does not negatively affect the bond strength of corroded steel after repeated loading unless the splitting crack occurs. But the fatigue life decreases sharply after splitting crack occurs. This research will be helpful for the realistic durability design and condition assessment of reinforced concrete structures.

Structural Behaviour of Beam-to-Concrete Filled Steel Tube Column Pin Connections (콘크리트충전 각형강관기둥-보 핀접합부의 거동에 관한 실험적 연구)

  • Kim, Cheol-Hwan;Lee, Eun-Taik;Kim, Seong-Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.4 s.47
    • /
    • pp.437-443
    • /
    • 2000
  • In order to clarify the behavior of beam-to-concrete filled steel tube column under cyclic loading condition, experimental studies were carried out on shear connections. Test parameters of this study are the width-to-thickness ratio and the effect on beams with or without slab and diaphragm. Test results show that the moment-rotation relationships of connections without slab are in the range of AISC regulation of pinned connections and the rotation capacity of connection is dependent upon the width-to-thickness ratio of the column.

  • PDF

Performance Evaluation on Static Loading and Cyclic Loading for Structural Insulated Panels (구조용단열패널의 정적가력과 반복가력 성능 평가)

  • Nah, Hwan-Seon;Lee, Hyeon-Ju;Choi, Sung-Mo
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.4 no.1
    • /
    • pp.33-39
    • /
    • 2013
  • Structural insulated panels, structurally performed panels consisting of a plastic insulation bonded between two structural panel facings, are one of emerging products with a viewpoint of its energy and construction efficiencies. These components are applicable to fabricated wood structures. In Korea, there are few technical documents regulated structural performance and engineering criteria in domestic market. This study was conducted to identify fundamental performance of both monotonic load and quasi static cyclic load for SIPs in shear wall application. Static test results showed that maximum load was 44.3kN, allowable shear load was 6.1kN/m, shear stiffness was 1.23 M N/m, and ductility ratio was 3.6. Cyclic test was conducted by two kinds of specimens : single panel and double panels. Cyclic test results, which were equivalent to static test results, showed that maximum load was 45.42kN, allowable shear load was 6.3kN/m. Furthermore the accumulated energy dissipation capability for double panels was as 2.3 times as that for single panel. From performance of structural tests, it was recommended that the allowable shear load for panels was at least 6.1kN/m.

Low cycle fatigue damage assessment in steel beams

  • Daali, M.L.;Korol, R.M.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.4
    • /
    • pp.341-358
    • /
    • 1995
  • The results of a series of ten W-shaped test specimens subjected to monotonic, quasi-static cyclic loading and fatigue type of loading in the form of constant amplitude tests are presented. The objectives were to assess and compare the rotation capacity and energy absorption of monotonically and cyclically loaded beams, and for the latter specimens to document the deterioration in the form of low cycle fatigue due to local buckling. In addition, strength and energy dissipation deterioration and damage models have been developed for the steel beam section under consideration. Finally, a generalized model which uses plate slenderness values and lateral slenderness is proposed for predicting rate in strength deterioration per reversal and cumulated damage after a given number of reversals.

An experiment on compressive profile of the unstiffened steel plate-concrete structures under compression loading

  • Choi, Byong Jeong;Han, Hong Soo
    • Steel and Composite Structures
    • /
    • v.9 no.6
    • /
    • pp.519-534
    • /
    • 2009
  • This study intends to examine the characteristics of compressive behavior and conducts comparative analysis between normal compressive strength under existing equations (LRFD, ACI 318, EC 4) and experimental the maximum compressive strength from the compression experiment for the unstiffened steel plate-concrete structures. The six specimens were made to evaluate the constraining factor (${\xi}$) and width ratio (${\beta}$) effects subjected to the compressive monotonic loading. Based on this experiments, the following conclusions could be made: first, compressive behaviors of the specimens from the finite element analysis closely agreed with the ones from the actual experiments; second, the higher the width ratio (${\beta}$) was, the lower the ductility index (DI) was; and third, the test results showed the maximum compressive strength with a margin by 7% compared to the existing codes.