• Title/Summary/Keyword: monolithic microwave integrated circuit (MMIC)

Search Result 119, Processing Time 0.029 seconds

Fabrication and characterization of the 0.25 ${\mu}m$ T-shaped gate P-HEMT and its application for MMIC low noise amplifier (0.25 ${\mu}m$ T형 게이트 P-HEMT 제작 및 특성 평가와 MMIC 저잡음 증폭기에 응용)

  • Kim, Byung-Gyu;Kim, Young-Jin;Jeong, Yoon-Ha
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.1
    • /
    • pp.38-46
    • /
    • 1999
  • o.25${\mu}m$ T-shaped gate P-HEMT is fabricated and used for design of X0band three stage monolithic microwave integrated circuit(MMIC) low noise amplifier(LNA). The fabricated P-HEMT exhibits an extrinsis transconductance of 400mS/mm and a drain current of 400mA/mm. The RF and noise characteristics show that the current gain cut off frequency is 65GHz and minimum noise figure(NFmin) of 0.7dB with an associated gain of 14.8dB at 9GHz. In the design of the three stage LNA, we have used the inductive series feedback circuit topology with the short stub. The effects of series feedback to the noise figure, the gain, and the stability have been investigated to find the optimal short stub length. The designed three staage LNA showed a gain of above 33dB, a noise figure of under 1.2dB, and ainput/output return loss of under 15dB and 14dB, respectively. The results show that the fabricated P-HEMT is very suitable for a X-band LNA with high gain.

  • PDF

Development of Large Signal Model Extractor and Small Signal Model Verification for GaAs FET Devices (GaAs FET소자 모델링을 위한 소신호 모델의 검증과 대신호 모델 추출기 개발)

  • 최형규;전계익;김병성;이종철;이병제;김종헌;김남영
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.787-794
    • /
    • 2001
  • In this paper, the development of large-signal model extractor for GaAs FET device through the Monolithic Microwave integrated Circuit(MMIC) is presented. The measurement program controlled by personal computer is developed for the processing of an amount of measured data, and the de-embedding algorithm is added to the program for voltage dropping as attached series resistance on measurement system. The small-signal model parameters are typically consisted of 7 elements that are considered as complexity of large-signal model and its the accuracy of the small-signal model is verified through comparing with measured data as varied bias point. The fitting function model, one of the empirical model, is used for quick simulation. In the process of large-signal model parameter extraction, one-dimensional optimization method is proposed and optimized parameters are extracted. This study can reduce the modeling and measuring time and can secure a suitable model for circuit.

  • PDF

Design of a LTCC Front End Module with Power Detecting Function (전력 검출 기능을 포함하는 LTCC 프런트 엔드 모듈 설계)

  • Hwang, Mun-Su;Koo, Jae-Jin;Koo, Ja-Kyung;Lim, Jong-Sik;Ahn, Dal;Yang, Gyu-Yeol;Kim, Jun-Chul;Kim, Dong-Su;Park, Ung-Hee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.8
    • /
    • pp.844-853
    • /
    • 2008
  • This paper describes the design of a FEM(Front End Module) having power detection function for mobile handset application. The designed FEM consists of a MMIC(Monolithic Microwave Integrated Circuits) power amplifier chip, SAW Tx filter and duplexer, diode power detector and stripline matching circuit. An LTCC(Low Temperature Co-fired Ceramics) technology is adopted for miniaturized FEM. The frequency band is $824{\sim}869$ MHz which is the uplink Tx band of the CDMA mobile system. The size of designed FEM is $7.0{\times}5.5{\times}1.5\;mm^3$, which is an ultra-small size even though the power detector circuit is included. All sub-components of FEM have been developed and measured in advance before being integrated into FEM. The measured output power and gain are 27 dBm and 27 dB, respectively. In addition, the measured ACPR characteristics are 46.59 dBc and 55.5 dBc at 885 kHz and 1.98 MHz offset, respectively.

An MMIC Doubly Balanced Resistive Mixer with a Compact IF Balun (소형 IF 발룬이 내장된 MMIC 이중 평형 저항성 혼합기)

  • Jeong, Jin-Cheol;Yom, In-Bok;Yeom, Kyung-Whan
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.12
    • /
    • pp.1350-1359
    • /
    • 2008
  • This paper presents a wideband doubly balanced resistive mixer fabricated using $0.5{\mu}m$ GaAs p-HEMT process. Three baluns are employed in the mixer. LO and RF baluns operating over an 8 to 20 GHz range were implemented with Marchand baluns. In order to reduce chip size, the Marchand baluns were realized by the meandering multicoupled line and inductor lines were inserted to compensate for the meandering effect. IF balun was implemented through a DC-coupled differential amplifier. The size of IF balun is $0.3{\times}0.5\;mm^2$ and the measured amplitude and phase unbalances were less than 1 dB and $5^{\circ}$, respectively from DC to 7 GHz. The mixer is $1.7{\times}1.8\;mm^2$ in size, has a conversion loss of 5 to 11 dB, and an output third order intercept(OIP3) of +10 to +15 dBm at 16 dBm LO power for the operating bandwidth.

Design of 77 GHz Automotive Radar System (77 GHz 차량용 레이더 시스템 설계)

  • Nam, Hyeong-Ki;Kang, Hyun-Sang;Song, Ui-Jong;Cui, Chenglin;Kim, Seong-Kyun;Nam, Sang-Wook;Kim, Byung-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.9
    • /
    • pp.936-943
    • /
    • 2013
  • This work presents the design and measured results of the single channel automotive radar system for 76.5~77 GHz long range FMCW radar applications. The transmitter uses a commercial GaAs monolithic microwave integrated circuit(MMIC) and the receiver uses the down converter designed using 65 nm CMOS process. The output power of the transmitter is 10 dBm. The down converter chip can operate at low LO power as -8 dBm which is easily supplied from the transmitter output using a coupled line coupler. All MMICs are mounted on an aluminum jig which embeds the WR-10 waveguide. A microstrip to waveguide transition is designed to feed the embedded waveguide and finally high gain horn antennas. The overall size of the fabricated radar system is $80mm{\times}61mm{\times}21mm$. The radar system achieved an output power of 10 dBm, phase noise of -94 dBc/Hz at 1 MHz offset and a conversion gain of 12 dB.

Development of Advanced DSRC Packet Communication Technology (차세대 DSRC 패킷 통신 기술 개발)

  • Lee Hyun;Park In-Seong;Shin Chang-Sub;Oh Hyun-Seo;Yim Choon-Sik;Cho Kyoung-Rok
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.2 no.1 s.2
    • /
    • pp.93-100
    • /
    • 2003
  • In this farer, An ADSRC(Advanced Dedicated Short Range Communication) packet communication system developed by ETRI is introduced. The ADSRC system has been developed to provide high-speed, short-range wireless racket communication in roadside environment for mobile office services. The requirements of the ADSRC system for mobile office services and the system design specification to meet them with regard to mobile of nce environment are discussed. The ADSRC packet communication systems consist of the MAC(Medium Access Control) Processor block the OFDM() modem block and the RF block. The MAC processor block handles medium access control. The OFDM modem transmits data packets at up to 24Mbps adaptively and recovers the data from RF block. The ADSRC packet communication system architecture is described.

  • PDF

Millimeter-wave Ceramic Package having Embedded Metal Sheet (도체판이 삽입된 밀리미파 세라믹 패키지)

  • 김진태;서재옥;방현국;박성대;조현민;강남기;이해영
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.8
    • /
    • pp.19-26
    • /
    • 2004
  • High performance packages must provide excellent transmission characteristics. In face-up ceramic packages, however, parasitic characteristics of bondwires are not negligible at millimeter-wave frequencies. Consequently, the electrical performance of ceramic packages is degraded. In をis paper, we propose a new millimeter-wave ceramic package feed-through having Embedded Metal Sheets (EMS). The package that contains double-bondwire interconnections is analyzed by the FEM (Finite Element Method) and measured from 20 to 50GHz. As a result, the proposed package having Embedded Metal Sheets (EMS) achieved 0.85dB, 0.4dB insertion loss improvement on the conventional and the double bondwires buried in epoxy ( $\varepsilon_{{\gamma}}$/ = 4) ceramic package respectively to 47GHz. This improved ceramic package will be useful for MMICs modules and small ceramic packages developments.amic packages developments.

An Wideband GaN Low Noise Amplifier in a 3×3 mm2 Quad Flat Non-leaded Package

  • Park, Hyun-Woo;Ham, Sun-Jun;Lai, Ngoc-Duy-Hien;Kim, Nam-Yoon;Kim, Chang-Woo;Yoon, Sang-Woong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.2
    • /
    • pp.301-306
    • /
    • 2015
  • An ultra-compact and wideband low noise amplifier (LNA) in a quad flat non-leaded (QFN) package is presented. The LNA monolithic microwave integrated circuit (MMIC) is implemented in a $0.25{\mu}m$ GaN IC technology on a Silicon Carbide (SiC) substrate provided by Triquint. A source degeneration inductor and a gate inductor are used to obtain the noise and input matching simultaneously. The resistive feedback and inductor peaking techniques are employed to achieve a wideband characteristic. The LNA chip is mounted in the $3{\times}3-mm^2$ QFN package and measured. The supply voltages for the first and second stages are 14 V and 7 V, respectively, and the total current is 70 mA. The highest gain is 13.5 dB around the mid-band, and -3 dB frequencies are observed at 0.7 and 12 GHz. Input and output return losses ($S_{11}$ and $S_{22}$) of less than -10 dB measure from 1 to 12 GHz; there is an absolute bandwidth of 11 GHz and a fractional bandwidth of 169%. Across the bandwidth, the noise figures (NFs) are between 3 and 5 dB, while the output-referred third-order intercept points (OIP3s) are between 26 and 28 dBm. The overall chip size with all bonding pads is $1.1{\times}0.9mm^2$. To the best of our knowledge, this LNA shows the best figure-of-merit (FoM) compared with other published GaN LNAs with the same gate length.

Differential LC VCO with Enhanced Tank Structure and LC Filtering Techniques in InGaP/GaAs HBT Technology (InGaP/GaAs HBT 공정을 이용하여 향상된 탱크 구조와 LC 필터링 기술을 적용한 차동 LC 전압 제어 발진기 설계)

  • Lee, Sang-Yeol;Kim, Nam-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.2 s.117
    • /
    • pp.177-182
    • /
    • 2007
  • This paper presents the InGaP/GaAs HBT differential LC VCO with low phase noise performance for adaptive feedback interference cancellation system(AF-lCS). The VCO is verified with enhanced tank structure including filtering technique. The output tuning range for proposed VCO using asymmetric inductor and symmetric capacitors withlow pass filtering technique is 207 MHz. The output powers are -6.68 including balun and cable loss. The phase noise of this VCO at 10 kHz, 100 kHz and 1 MHz are -102.02 dBc/Hz, -112.04 dBc/Hz and -130.40 dBc/Hz. The VCO is designed within total size of $0.9{\times}0.9mm^2$.