• Title/Summary/Keyword: monolithic microwave integrated circuit

Search Result 124, Processing Time 0.023 seconds

The Design and Fabrication of X-Band MMIC Low Noise Amplifier for Active antennal using P-HEMT (P-HEMT를 이용한 능동 안테나용 X-Band MMIC 저잡음 증폭기 설계 및 제작)

  • 강동민;맹성재;김남영;이진희;박병선;윤형섭;박철순;윤경식
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.506-514
    • /
    • 1998
  • The design and fabrication of X-band(11.7~12 GHz) 2-stage monolithic microwave integrated circuit(MMIC) low noise amplifier (LNA) for active antenna are presented using $0.15{\mu}m\times140{\mu}m$ AlGaAs/InGaAs/GaAs pseudomorphic high electron mobility transistor (P-HEMT). In each stage of the LNA, a series feedback by using a source inductor is used for both input matching and good stability. The measurement results are achieved as an input return loss under -17 dB, an output return loss under -15dB, a noise figure of 1.3dB, and a gain of 17 dB at X-band. This results almost concur with a design results except noise figure(NF). The chip size of the MMIC LNA is $1.43\times1.27$.

  • PDF

Broadband Microwave SPDT Switch Using CPW Impedance Transform Network (CPW 임피던스 변환회로를 이용한 광대역 마이크로파 SPDT 스위치)

  • Lee Kang Ho;Park Hyung Moo;Rhee Jin Koo;Koo Kyung Heon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.7 s.337
    • /
    • pp.57-62
    • /
    • 2005
  • This paper describes the design of a high performance microwave single pole double throw (SPDT) monolithic microwave integrated circuit switch using GaAs pHEMT process. The switch design proposes a novel coplanar waveguide (CPW) impedance transform network which results in the low insertion loss and high isolation by compensating for the FET parasitics to get the low on-resistance and low off-capacitance. The proposed switch has the measured isolation of better than 24 dB and insertion loss of less than 2.6 dB from 53 to 61 GHz. The chip is fabricated with the size of 2.2mm $\times$ 1.6 mm.

The Study on Highly Miniaturized Active 90°C Phase Difference Power Divider and Combiner for Application to Wireless Communication (무선 통신 시스템 응용을 위한 초소형화된 능동형 90°C 위상차 전력 분배기와 결합기에 관한 연구)

  • Park, Young-Bae;Kang, Suk-Youb;Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.1
    • /
    • pp.144-152
    • /
    • 2009
  • This paper propose highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner for application to wireless communication system. The conventional passive $90^{\circ}C$ power divider and combiner cannot be integrated on MMIC because of their very large circuit size. Therefore, the highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner are required for a development of highly integrated MMIC. In this paper, the highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner employing InGaAs/GaAs HBT were designed, fabricated on GaAs substrate. According to the results, the circuit size of fabricated active $90^{\circ}C$ phase difference power divider and combiner were $1.67{\times}0.87$ mm and $2.42{\times}1.05$ mm, respectively, which were 31.6% and 2.2% of the size of conventional passive branch-line coupler. The output gain division characteristic of proposed divider circuit showed 8.4 dB and 7.9 dB respectively, and output phase difference characteristic showed $-89.3^{\circ}C$. The output gain coupling characteristic of proposed combiner circuit showed 9.4 dB and 10.5 dB respectively, and output phase difference characteristic showed $-92.6^{\circ}C$. The highly miniaturized active $90^{\circ}C$ phase difference power divider and combiner exhibited good RF performances compared with the conventional passive branch-line coupler.

An MMIC X-band Darlington-Cascade Amplifier (단일 칩 X-band 달링톤-캐스코드 증폭기)

  • Kim, Young-Gi;Doo, Seok-Joo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.37-43
    • /
    • 2009
  • This paper describes a monolithic Darlington-cascade amplifier (DCA) operating at X-band, realized with a 0.35-micron SiGe bipolar process, which provides 45 GHz $f_T$. A conventional cascade amplifier was also designed on the same process and tested to establish a reference. Compared to the reference cascade amplifier, the proposed monolithic amplifier circuit exhibits an improved gain of 2.5 dB and improved output power 1-dB compression point of 5.2 dB with 72% wider bandwidth. Measurement results show 19.5 dB gain, 11.2 dBm 1-dB compression power, and 3.1 GHz bandwidth. These results demonstrate that the Darlington-cascade cell is an advantageous substitute to the conventional cascade amplifier.

A Decade-Bandwidth Distributed Power Amplifier MMIC Using 0.25 μm GaN HEMT Technology

  • Shin, Dong-Hwan;Yom, In-Bok;Kim, Dong-Wook
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.4
    • /
    • pp.178-180
    • /
    • 2017
  • This study presents a 2-20 GHz monolithic distributed power amplifier (DPA) using a $0.25{\mu}m$ AlGaN/GaN on SiC high electron mobility transistor (HEMT) technology. The gate width of the HEMT was selected after considering the input capacitance of the unit cell that guarantees decade bandwidth. To achieve high output power using small transistors, a 12-stage DPA was designed with a non-uniform drain line impedance to provide optimal output power matching. The maximum operating frequency of the proposed DPA is above 20 GHz, which is higher than those of other DPAs manufactured with the same gate-length process. The measured output power and power-added efficiency of the DPA monolithic microwave integrated circuit (MMIC) are 35.3-38.6 dBm and 11.4%-31%, respectively, for 2-20 GHz.

Technical Trends in GaN RF Electronic Device and Integrated Circuits for 5G Mobile Telecommunication (5G 이동통신을 위한 GaN RF 전자소자 및 집적회로 기술 동향)

  • Lee, J.M.;Min, B.G.;Chang, W.J.;Ji, H.G.;Cho, K.J.;Kang, D.M.
    • Electronics and Telecommunications Trends
    • /
    • v.36 no.3
    • /
    • pp.53-64
    • /
    • 2021
  • As the 5G service market is expected to grow rapidly, the development of high-power, high-efficiency power amplifiers for the 5G communication infrastructure is indispensable. Gallium nitride (GaN) is attracting great interest as a key device in power devices and integrated circuits due to its wide bandgap, high carrier concentration, high electron mobility, and high-power saturation characteristics. In this study, we investigate the technology trends of Ka-band GaN radio frequency (RF) power devices and integrated circuits for operation in the millimeter-wave band of recent 5G mobile communication services. We review the characteristics of GaN RF high electron mobility transistor (HEMT) devices to implement power amplifiers operating at frequencies around 28 GHz and compare the technology of foreign companies with the device characteristics currently developed by the Electronics and Telecommunication Research Institute (ETRI). In addition, the characteristics of Ka-band GaN monolithic microwave integrated circuit (MMIC) power amplifiers manufactured using various GaN HEMT device technologies are reviewed by comparing characteristics such as frequency band, output power, and output power density of integrated circuits. In addition, by comparing the performance of the power amplifier developed by ETRI, the current status and future direction of domestic GaN power devices and integrated circuit technology will be discussed.

Basic RF Characteristics of Fishbone-Type Transmission Line Employing Comb-Type Ground Plane (FTLCGP) on PES Substrate for Use in Flexible Passive Circuits

  • Yun, Young;Jeong, Jang-Hyeon;Kim, Hong Seung;Jang, Nakwon
    • ETRI Journal
    • /
    • v.37 no.1
    • /
    • pp.128-137
    • /
    • 2015
  • In this work, a fishbone-type transmission line employing a comb-type ground plane (FTLCGP) was fabricated on polyethersulfone (PES) substrate, and its RF characteristics were thoroughly investigated. According to the results, it was found that the FTLCGP on PES showed periodic capacitance values much higher than other types of transmission lines due to a coupling capacitance between the signal line and ground, which resulted in a reduction of wavelength and line width. Using the theoretical analysis, we also extracted the bandwidth characteristic of the FTLCGP on PES. According to the result, the FTLCGP structure showed a cut-off frequency of 280 GHz.

이동통신 단말기용 MMIC의 시장동향 및 국내기술동향

  • 오재응
    • 전기의세계
    • /
    • v.49 no.7
    • /
    • pp.9-12
    • /
    • 2000
  • 현대의 이동통신 시장은 제3세대를 맞이하여 cellular에서 PCS(Personal Communication System) 그리고 IMT-2000으로 점차 광대역 서비스를 위한 하드웨어 및 소프트웨어가 발전하고 있다. 이러한 시스템을 구성하는 부품 중에서 신호를 송수신하는 부품은 전력소모와 소형화를 위한 노력이 지속적으로 진행되어 왔으며 hybrid 상태에서 점차적으로 one chip형태의 집적회로, 즉 MMIC(Monolithic Microwave Integrated Circuit)에 대한 요구가 급격히 증가되고 있다. 특히 이동통신단말기의 가장 고가의 RF부품인 전력증폭기의 요구사양이 우수한 선형성 및 전력효율이라는 측면에서 GaAs MMIC 기술이 주도적으로 쓰일 것이라는 면과 또한 여러형태의 이동통신이 더욱 높은 주파수대역으로 이동함에 따라 관련시장의 폭발적인 발전이 예상되고 있다. 전략 분석가인 Stephen Entwistle은 1999년의 GaAs IC시장의 규모를 22.5억불로 평가하였으며, CIBC World Market의 Earl Lum은 24억불수준으로 평가하였다. 2004년에는 110억불 수준에 이를 것으로 예상되고 있다. 본 논문의 전반부에서는 최근의 MMIC시장의 동향을 최신 article을 참고로 하여 정리하였으며, 후반에서는 최근의 관련 워크샵의 내용 중 국내의 MMIC기술현황을 간추려 요약하였다.

  • PDF

Epitaxial Layer Design for High Performance GaAs pHEMT SPDT MMIC Switches

  • Oh, Jung-Hun;Mun, Jae-Kyoung;Rhee, Jin-Koo;Kim, Sam-Dong
    • ETRI Journal
    • /
    • v.31 no.3
    • /
    • pp.342-344
    • /
    • 2009
  • From a hydrodynamic device simulation for the pseudomorphic high electron mobility transistors (pHEMTs), we observe an increase of maximum extrinsic transconductance and a decrease of source-drain capacitances. This gives rise to an enhancement of the switching speed and isolation characteristics as the upper-to-lower planar-doping ratios (UTLPDR) increase. On the basis of simulation results, we fabricate single-pole-double-throw transmitter/receiver monolithic microwave integrated circuit (MMIC) switches with the pHEMTs of two different UTLPDRs (4:1 and 1:2). The MMIC switch with a 4:1 UTLPDR shows about 2.9 dB higher isolation and approximately 2.5 times faster switching speed than those with a 1:2 UTLPDR.

  • PDF

Technical Trends of Next-Generation GaN Power Amplifier for High-frequency and High-power (차세대 GaN 고주파 고출력 전력증폭기 기술동향)

  • Lee, S.H.;Kim, S.I.;Min, B.G.;Lim, J.W.;Kwon, Y.H.;Nam, E.S.
    • Electronics and Telecommunications Trends
    • /
    • v.29 no.6
    • /
    • pp.1-13
    • /
    • 2014
  • GaN(Gallium Nitride)는 3.4eV의 넓은 에너지 갭으로 인하여 고전압에서 동작이 가능하고, 분극전하를 이용한 캐리어 농도가 높아 높은 전류밀도와 전력밀도를 얻을 수 있으며, 높은 전자 이동도와 포화 속도로부터 고속 동작이 가능하여 고주파 고출력 고효율 소형의 전력증폭기 소자의 재료로 적합하다. 본고에서는 민수 및 군수 겸용 Ku-대역 및 Ka-대역 GaN 고출력 전력증폭기(SSPA: Solid-State Power Amplifier)와 관련된 GaN 전력증폭 소자, GaN 전력증폭기 MMIC(Microwave Monolithic Integrated Circuit), 내부정합 패키지형 GaN 전력증폭기 및 GaN SSPA에 대하여, 국내외 특허 기술동향과 연구개발 기술동향을 중심으로 고찰하고자 한다. 국외의 GaN 고주파 고출력 전력증폭기 기술의 연구동향이나 특허동향을 심층분석하여 연구개발에 활용하고자 한다.

  • PDF