An MMIC X-band Darlington-Cascade Amplifier

단일 칩 X-band 달링톤-캐스코드 증폭기

  • 김영기 (안양대학교 정보통신공학과) ;
  • 두석주 (육군3사관학교 전자공학과)
  • Published : 2009.12.25

Abstract

This paper describes a monolithic Darlington-cascade amplifier (DCA) operating at X-band, realized with a 0.35-micron SiGe bipolar process, which provides 45 GHz $f_T$. A conventional cascade amplifier was also designed on the same process and tested to establish a reference. Compared to the reference cascade amplifier, the proposed monolithic amplifier circuit exhibits an improved gain of 2.5 dB and improved output power 1-dB compression point of 5.2 dB with 72% wider bandwidth. Measurement results show 19.5 dB gain, 11.2 dBm 1-dB compression power, and 3.1 GHz bandwidth. These results demonstrate that the Darlington-cascade cell is an advantageous substitute to the conventional cascade amplifier.

본 논문에서는 증폭특성이 우수한 달링톤-캐스코드(Darlington-Cascode) 증폭기 구조를 제안하였다. 전통적으로 고주파 증폭 특성이 우수하다고 알려진 기존의 캐스코드 증폭기 회로와의 비교를 위해 본 논문에서는 제안된 달링톤-캐스코드 구조와 기존의 캐스코드 구조의 증폭기를 동일 칩 상에 인접하도록 설계하였다. 이 회로들은 45 GHz의 $f_T$를 가진 $0.35-{\mu}m$ SiGe 기반의 초고주파 단일 칩(MMIC; Monolithic Microwave Integrated Circuit)으로 제작되어 동일 조건 하에서 X-band 대역의 고주파 증폭특성들이 측정, 비교 및 분석되었다. 성능 측정결과 제안된 달링톤-캐스코드 증폭기는 11.5 dBm의 P1dB와 19.5 dB의 선형 증폭도를 보여주었으며, 기존 캐스코드 증폭기와 비교시 PldB는 5.2 dB, 이득면에서는 2.5 dB의 향상된 결과를 나타내었다.

Keywords

References

  1. R. G. Meyer and R. A. Blauschild, 'A 4-terminal wide-band monolithic amplifier,' IEEE Journal of Solid-State Circuits, vol. 16, no. 6, pp. 634-638, Dec. 1981 https://doi.org/10.1109/JSSC.1981.1051655
  2. K. W. Kobayashi, R. Esfandiari, M. E. Hafizi, D. C. Streit, A. K. Oki, L. T. Tran, D. K. Umemoto, and M. E. Kim, 'GaAs HBT wideband matrix distributed and Darlington feedback amplifiers to 24 GHz,' IEEE Trans. on Microwave Theory and Techniques, vol. 39, no. 12, pp. 2001-2009, Dec. 1991 https://doi.org/10.1109/22.106539
  3. J. S. Lee and J. D Cressler, 'Analysis and design of an ultra-wideband low-noise amplifier using resistive feedback in SiGe HBT technology,' IEEE Trans. Microwave Theory and Techniques, vol. 54, no. 3, Mar. 2006
  4. N. H. Sheng, W. J. Ho, N. L. Wang, R. L. Pierson, P. M. Asbeck, and W. L. Edwards, 'A 30 GHz bandwidth AlGaAs-GaAs HBT direct-coupled feedback amplifier,' IEEE Microwave and Guided Wave Letters, vol. 1, no. 8, pp. 208-210, Oct. 1991 https://doi.org/10.1109/75.84589
  5. H. S. Tsai, R. Kopf, R. Meledes, M. Meldes, A. Tate, R. Ryan, R. Hamm, and Y. K. Chen, '90 GHz baseband lumped amplifier,' Electronics Letters, vol. 36, no. 22, pp. 1833-1834, Oct. 2000 https://doi.org/10.1049/el:20000850
  6. M. C. Chiang, S. S. Lu, C. C. Meng, S. A. Yu, S. C. Yang, and Y. J. Chan, "Analysis, design, and optimization of InGaP-GaAs HBT matched-impedance wide-band amplifiers with multiple feedback loops," IEEE Journal of Solid-State Circuits, vol. 37, no. 6, pp. 694-701, Jun. 2002 https://doi.org/10.1109/JSSC.2002.1004573
  7. Y. Suzuki, H. Shimawaki, Y. Amamiya, N. Nagano, T. Niwa, H. Yano and K. Honjo, '50-GHz-bandwidth baseband amplifiers using GaAs-based HBT's," IEEE J. Solid-State Circuits, vol. 33, Issue 8, pp. 1336-1341, Sep. 1998 https://doi.org/10.1109/4.711332
  8. K. W. Kobayashi, 'A novel E-mode PHEMT linearized Darlington cascode amplifier,' in IEEE Comp. Semic. I.C. Symp., 2006, pp. 153-156
  9. K. W. Kobayashi, Y. C. Chen. I. Smorchkova, R. Tsai, M. Wojtowicz, and A. Oki, '1-watt conventional and cascoded GaN-SiC Darlington MMIC amplifiers to 18 GHz,' in Proc. 2007 IEEE Radio Frequency Integrated Circuits(RFIC), Jun. 2007, pp. 585-588 https://doi.org/10.1109/RFIC.2007.380952
  10. J. S. Lee, Y. G. Kim, E. J. Lee, C. W. Kim, and P. Roblin, 'A 8-GHz SiGe HBT VCO design on a low resistive silicon substrate using GSML,' IEEE Trans. Circuits and Systems-I, vol. 54, no. 10, pp. 2128-2136, Oct. 2007 https://doi.org/10.1109/TCSI.2007.904595
  11. J. Andrews, J. D. Cressler, and M. Mitchell, 'A high-gain, two-stage, X-band SiGe power amplifier,' in IEEE MTT-S Microwave Symp. Dig., Jun. 2007, pp. 817 – 820 https://doi.org/10.1109/MWSYM.2007.380084
  12. W. M. L. Kuo, Q. Liang, J. D. Cressler, and M. A. Mitchell, 'An X-band SiGe LNA with 1.36 dB mean noise figure for monolithic phased array transmit-receive radar modules,' in IEEE Radio Frequency Integrated Circuits. Symp. Dig., 2006, pp. 11-13
  13. P. Roux, Y. Baeyens, J. Weiner, and Y. K. Chen, 'Ultra-low-power X-band SiGe HBT low-noise amplifiers,' in IEEE MTT-S Int. Microw. Symp. Dig., 2007, pp. 1787-1790 https://doi.org/10.1109/MWSYM.2007.380094
  14. Y. J. Llano and A. H. Guardado, 'SiGe BiCMOS LNA meeting FCC part 15 ultra-wideband restrictions,' in Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems Dig., 2004, pp. 183-186 https://doi.org/10.1109/SMIC.2004.1398198
  15. K. Nakajima, Y. Yoshida, H. Ueda, T. Nishino, H. Fukumoto, and N. Suematsu, 'X-band SiGe-MMIC low noise amplifier using low parasitic capacitance via holes for emitter grounding,' in Proc. 2007 IEEE Radio and Wireless Symposium, Jan. 2007, pp. 431-434 https://doi.org/10.1109/RWS.2007.351860
  16. J. Chen, T. Yoshimasu, W. Hu, H. Liu, N. Itoh, and K. Yonemura, 'An Ultra-Wideband and Low-Power Amplifier Using 0.35-Om SiGe BiCMOS Technology,' in Proc. 2006 International Conference on Communications, Circuits and Systems, Jun. 2006, pp. 2614-2617
  17. W.M. L. Kuo, R. Krithivasan, X. Li, Y. Lu, J. D. Cressler, H. Gustat, and B. Heinemann, 'A low-power, X-band SiGe HBT low-noise amplifier for near-space radar applications,' IEEE Microwave and Guided Wave Letters, vol. 6, no. 9, pp. 520-522, Sep. 2006
  18. D. Barras, F. Ellinger, H. Jackel, and W. Hirt, 'A low supply voltage SiGe LNA for ultra-wideband frontends,' IEEE Microwave and Guided Wave Letters, vol. 14, no. 10, pp. 469-471, Oct. 2004 https://doi.org/10.1109/LMWC.2004.834556