• 제목/요약/키워드: monocyte adhesion

검색결과 68건 처리시간 0.026초

Ursodeoxycholic Acid (UDCA) Exerts Anti- Atherogenic Effects by Inhibiting Endoplasmic Reticulum (ER) Stress Induced by Disturbed Flow

  • Chung, Jihwa;Kim, Kyoung Hwa;Lee, Seok Cheol;An, Shung Hyun;Kwon, Kihwan
    • Molecules and Cells
    • /
    • 제38권10호
    • /
    • pp.851-858
    • /
    • 2015
  • Disturbed blood flow with low-oscillatory shear stress (OSS) is a predominant atherogenic factor leading to dysfunctional endothelial cells (ECs). Recently, it was found that disturbed flow can directly induce endoplasmic reticulum (ER) stress in ECs, thereby playing a critical role in the development and progression of atherosclerosis. Ursodeoxycholic acid (UDCA), a naturally occurring bile acid, has long been used to treat chronic cholestatic liver disease and is known to alleviate endoplasmic reticulum (ER) stress at the cellular level. However, its role in atherosclerosis remains unexplored. In this study, we demonstrated the anti-atherogenic activity of UDCA via inhibition of disturbed flow-induced ER stress in atherosclerosis. UDCA effectively reduced ER stress, resulting in a reduction in expression of X-box binding protein-1 (XBP-1) and CEBP-homologous protein (CHOP) in ECs. UDCA also inhibits the disturbed flow-induced inflammatory responses such as increases in adhesion molecules, monocyte adhesion to ECs, and apoptosis of ECs. In a mouse model of disturbed flow-induced atherosclerosis, UDCA inhibits atheromatous plaque formation through the alleviation of ER stress and a decrease in adhesion molecules. Taken together, our results revealed that UDCA exerts anti-atherogenic activity in disturbed flow-induced atherosclerosis by inhibiting ER stress and the inflammatory response. This study suggests that UDCA may be a therapeutic agent for prevention or treatment of atherosclerosis.

The role of peroxidases in the pathogenesis of atherosclerosis

  • Park, Jong-Gil;Oh, Goo-Taeg
    • BMB Reports
    • /
    • 제44권8호
    • /
    • pp.497-505
    • /
    • 2011
  • Reactive oxygen species (ROS), which include superoxide anions and peroxides, induce oxidative stress, contributing to the initiation and progression of cardiovascular diseases involving atherosclerosis. The endogenous and exogenous factors hypercholesterolemia, hyperglycemia, hypertension, and shear stress induce various enzyme systems such as nicotinamide adenine dinucleotide (phosphate) oxidase, xanthine oxidase, and lipoxygenase in vascular and immune cells, which generate ROS. Besides inducing oxidative stress, ROS mediate signaling pathways involved in monocyte adhesion and infiltration, platelet activation, and smooth muscle cell migration. A number of antioxidant enzymes (e.g., superoxide dismutases, catalase, glutathione peroxidases, and peroxiredoxins) regulate ROS in vascular and immune cells. Atherosclerosis results from a local imbalance between ROS production and these antioxidant enzymes. In this review, we will discuss 1) oxidative stress and atherosclerosis, 2) ROS-dependent atherogenic signaling in endothelial cells, macrophages, and vascular smooth muscle cells, 3) roles of peroxidases in atherosclerosis, and 4) antioxidant drugs and therapeutic perspectives.

Colchicine Inhibits Integrin ${\alpha}_5{\beta}_1$ Gene Expression during PMA induced dDfferentiation of U937 Cells

  • Jang, Won-Hee;Rhee, In-Ja
    • Archives of Pharmacal Research
    • /
    • 제18권6호
    • /
    • pp.376-380
    • /
    • 1995
  • Monocyte adhesion involves specific cell surface receptors, integrins and results in cell differentiation. We have studied expression and regulation of integrin .${\alpha}_5{\beta}_1$ during differntiation of U937 as in vitro model. To determine expression of integrin ${\alpha}_5{\beta}_1$ during differentiation of U937 as in vitro model. To determine expression of integrin ${\alpha}_5{\beta}_1$ genes by RT-PCR (reverse transcription and polymerase chain reaction) method. We determined expression of integrin ${\alpha}_5{\beta}_1$ genes by RT-PCE (reverse transcription and polymerase chain reaction) method. We found that expression of integrin .alpha.5.betha.1 was greatly increased during PMA-induced differentiation of U937 cells and also found that PMA-induced expression of integrin ${\alpha}_5{\beta}_1$ was inhibited by colchicine, microtubule depoly merizing agent. These results indicate that microtubular integrity is associated with expression of integrin. ${\alpha}_5{\beta}_1$ during PMA-induced differentiation of U937 cells.

  • PDF

혈관내피세포에서 우방자(牛蒡子) 에탄올 추출물의 항염증 효과 (Anti-Inflammatory Effect of Ethanol Extract from the Seeds of Arctium Lappa L. in Vascular Endothelial Cells)

  • 이윤정;윤정주;김혜윰;안유미;홍미현;손찬옥;나세원;이호섭;강대길
    • 대한한방부인과학회지
    • /
    • 제32권3호
    • /
    • pp.20-31
    • /
    • 2019
  • Objectives: The seeds from Arctium lappa have been considered for its various pharmacological properties, which include anti-carcinogenic, anti-inflammatory, anti-diabetic, and anti-viral activities. Methods: In the present study, we investigated the anti-inflammatory effect of the ethanol extract from the seeds of Arctium lappa L (EAL) on cytokine-induced vascular inflammation in human umbilical vein endothelial cells (HUVEC). Results: Pretreatment with EAL significantly decreased tumor necrosis factor alpha ($TNF-{\alpha}$)-induced cell adhesion molecules expression such as intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (VCAM-1), and endothelial-selectin (E-selectin) in a dose-dependent manner. Cell adhesion assay showed that pretreatment with EAL suppressed HUVEC-monocyte adhesion by $TNF-{\alpha}$ over $1{\mu}g/ml$ concentration. We investigated the involvement of nuclear transcription factor kappa-B ($NF-{\kappa}B$) in $TNF-{\alpha}$-induced vascular inflammation. $NF-{\kappa}B$ p65 nuclear expression was induced by $TNF-{\alpha}$, however, pretreatment with EAL was attenuated that nuclear translocation. In cytoplasm, EAL was also attenuated $TNF-{\alpha}$-induced decrease of inhibitor of ${\kappa}B-{\alpha}$ ($I{\kappa}B-{\alpha}$) expression. Moreover, EAL significantly decreased $TNF-{\alpha}$-induced production of intracellular reactive oxygen species (ROS). Conclusions: Taken together, our findings suggest that seeds of Arctium lappa L could be a therapeutic herb for prevention of cardiovascular diseases throughout the inhibition of vascular endothelial inflammation.

Chunghyul-dan acts as an anti-inflammatory agent in endothelial cells by regulating gene expression

  • Jung, Woo-Sang;Cho, Jin-Gu;In, Kyung-Min;Kim, Jong-Min;Cho, Ki-Ho;Park, Jung-Mi;Moon, Sang-Kwan;Kim, Kyung-Wook;Park, Seong-Uk;Pyee, Jae-Ho;Park, Sang-Gyu;Jeong, Yoon-Hwa;Park, Heon-Yong;Ko, Chang-Nam
    • Animal cells and systems
    • /
    • 제14권4호
    • /
    • pp.275-282
    • /
    • 2010
  • Chunghyul-dan (CHD) is a combinatorial drug known to exert anti-inflammatory effects in endothelial cells. In this study, we employed global transcriptional profiling using cDNA microarrays to identify molecular mechanisms responsible for the anti-inflammatory activity of CHD in endothelial cells. An analysis of the microarray data revealed that transcript levels of monocyte chemotactic protein-1 (MCP-1), vascular cell-adhesion molecule-1 (VCAM-1) and activated leukocyte cell-adhesion molecule were dramatically altered in CHD-treated endothelial cells. These changes in gene expression were confirmed by RT-PCR, Western blotting and ELISA. Chronic CHD treatment also appeared to decrease MCP-1 secretion, probably as a result of decreased MCP-1 expression. In addition, we determined that chronic CHD treatment inhibited lipopolysaccharide-stimulated adhesion of THP-1 leukocytes to endothelial cells. The inhibitory effect of CHD on LPS-stimulated adhesion resulted from downregulation of VCAM-1 expression. Transmigration of THP-1 leukocytes through endothelial cells was also inhibited by chronic CHD treatment. In conclusion, CHD controls a variety of inflammatory activities by regulating MCP-1 and VCAM-1 gene expression.

Anti-atherosclerotic Effect of the Methanol Extract of Sorbus commixta Cortex in the High Cholesterol-Diet Rats

  • Kang, Dae-Gill;Sohn, Eun-Jin;Kim, Jin-Sook;Lee, Yun-Jung;Moon, Mi-Kyoung;Lee, An-Sook;An, Jun-Seok;Lee, Ho-Sub
    • 동의생리병리학회지
    • /
    • 제20권5호
    • /
    • pp.1337-1345
    • /
    • 2006
  • Hypercholesterolemia is a pivotal pathogenic factor for the development and maintenance of atherosclerosis. The present study was designed to evaluate whether the methanol extract of Sorbus commixta cortex (MSC) restores vascular dysfunction in association with the aortic expressions of proinflarnmatory and adhesion molecules in high cholesterol (HC) diet-rats. Chronic treatment with low (100 mg/kg/day) or high doses (200 mg/kg/day) of MSC lowered the increase in plasma levels of triglyceride (TG) and low-density lipoprotein (LDL) cholesterol induced by a cholesterol-enriched diet without affecting on the plasma level of high density lipoprotein (HDL)-cholesterol. Vascular tone attenuated in the HC-diet rats was restored by administration with MSC. Treatment with MSC also suppressed the HC-induced increase in the monocyte chemoattractant protein-1 (MCP-1) and nuclear factor-$_K$B (NF-$_K$B) p65 expressions as well as expressions levels of adhesion molecules including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (ICAM-1), and E-selectin in aorta. The present study also showed that MSC inhibited the HC-mediated induction of ET-1 and ACE expression. In histopathological examination, aortic segments in the HC-diet rat revealed thickening intima and media, which were blocked by administration with MSC. Taken together, MSC could suppress the development of atherosclerosis in the HC-diet rat model through the inhibition of the aortic expression levels of pro-inflammatory and adhesion molecules.

말초혈액 단핵구에 대한 내독소 자극의 신호 전달에서 Protein Kinase C와 Protein Tyrosine Kinase의 역할 (The Role of Protein Kinase C and Protein Tyrosine Kinase in the Signal Transduction Pathway of Stimulus Induced by Endotoxin in Peripheral Blood Monocyte)

  • 김재열;박재석;이귀래;유철규;김영환;한성구;심영수
    • Tuberculosis and Respiratory Diseases
    • /
    • 제44권2호
    • /
    • pp.338-348
    • /
    • 1997
  • Background : Endotoxin, the component of outermembrane of gram negative organism, plays an important role in the initiation and amplification of inflammatory reaction by its effects on inflammatory cells. Until recently, there have been continuing efforts to delinate the mechanisms of the signal trasduction pathway of endotoxin stimuli on inflammatory cells. By uncovering the mechanisms of signal transduction pathway of endotoxin stimuli, we can expect to have tools to control the excessive inflammatory responses which sometimes may be fatal to the involved host. It was generally accepted that endotoxin exerts its inflammatory effects through inflammatory cytokines that are produced by endotoxin-stimulated inflammatory cells and there were some reports on the importance of protein kinase C and protein tyrosine kinase activation in the production of inflammatory cytokines by endotoxin So we evaluated the effect of pretreatment of protein kinase C inhibitors (H7, Staurosporin) and protein tyrosine kinase inhibitors(Herbimycin, Genistein) on the endotoxin-stimulated cytokines(IL-8 & TNF-$\alpha$) mRNA expression. Method : Peripheral blood monocytes were isolated from healthy volunteers by Ficoll-Hypaque density gradient method and purified by adhesion to 60mm Petri dishes. Endotoxin(LPS 100ng/ml) was added to each dishes except one control dish, and each endotoxin-stimulated dishes was preincubated with H7, Staurosporin(protein kinase C inhibitor), Herbimycin or Genistein(protein tyrosine kinase inhibitor) respectively except one dish. Four hours later the endotoxin stimulation, total RNA was extracted and Northern blot analysis for IL-8 mRNA and TNF-$\alpha$ mRNA was done. Result : Endotoxin stimulation increased the expression of IL-8 mRNA and TNF-$\alpha$ mRNA expression in human peripheral blood monocyte as expected and the stimulatory effect of endotoxin on TNF-$\alpha$ mRNA expression was inhibited by protein kinase C inhibitors(H7, Staurosporin) and protein tyrosine kinase inhibitors (Herbimycin, Genistein). The inhibitory effect of each drugs was increased with increasing concentration. The stimulatory effect of endotoxin on IL-8 mRNA was also inhibited by H7 and protein tyrosine kinase inhibitors (Herbimycin, Genistein) dose-dependently but not by Staurosporin. Conclusion : Protein kinase C and protein tyrosine kinase are involved in the endotoxin induced signal transduction pathway in human peripheral blood monocyte.

  • PDF

단삼 (Salviae Miltiorrhizae Radix) 메탄올 추출물의 항염증 효과 (Anti-inflammatory effect of Salviae Miltiorrhizae Radix)

  • 윤현정;허숙경;윤형중;박원환;박선동
    • 대한본초학회지
    • /
    • 제22권4호
    • /
    • pp.65-73
    • /
    • 2007
  • Objective : Salvia miltiorrhiza Bunge (Labiatae) (SM), an eminent herbal plant, has been widely used in traditional Chinese medicine for the treatment of vascular diseases such as hypertension. The aim of this study was to determine whether SM inhibits production of nitrite, an index of NO, and proinflammatory cytokines in lipopolysaccharide (LPS)-treated RAW 264.7 macrophages. And this study investigated whether or not SM could reduce tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$)-induced inflammatory response in human vascular aortic smooth muscle cells (HASMC) and umbilical vein endothelial cells (HUVEC). Methods : Cytotoxic activity of SM on RAW 264.7 cells was using 5-(3-caroboxymeth-oxy phenyJ)-2H-tetra-zolium inner salt (MTS) assay. We measured the NO production using Griess Reagent System. Production of Proliflammatory cytokines was measured by Enzyme-Linked Immunosorbent Assay (ELISA). Results : Our results indicated that SM significantly inhibited the LPS-induced NO production accompanied by an attenuation of tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$), IL-6 and monocyte chemoattractant protein (MCP)-1 formation in macrophages. SM decreased TNF-${\alpha}$-induced IL-8, IL-6 production, and intracellular adhesion molecule (ICAM)-1 and vascular cell adhesion molecule (VCAM)-1 expression. Conclusion : These results indicate that SM has potential as an anti-inflammatory agent.

  • PDF

Ginsenoside compound K protects human umbilical vein endothelial cells against oxidized low-density lipoprotein-induced injury via inhibition of nuclear factor-κB, p38, and JNK MAPK pathways

  • Lu, Shan;Luo, Yun;Zhou, Ping;Yang, Ke;Sun, Guibo;Sun, Xiaobo
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.95-104
    • /
    • 2019
  • Background: Oxidized low-density lipoprotein (ox-LDL) causes vascular endothelial cell inflammatory response and apoptosis and plays an important role in the development and progression of atherosclerosis. Ginsenoside compound K (CK), a metabolite produced by the hydrolysis of ginsenoside Rb1, possesses strong anti-inflammatory effects. However, whether or not CK protects ox-LDL-damaged endothelial cells and the potential mechanisms have not been elucidated. Methods: In our study, cell viability was tested using a 3-(4, 5-dimethylthiazol-2yl-)-2,5-diphenyl tetrazolium bromide (MTT) assay. Expression levels of interleukin-6, monocyte chemoattractant protein-1, tumor necrosis factor-${\alpha}$, intercellular adhesion molecule-1, and vascular cell adhesion molecule-1 were determined by enzyme-linked immunosorbent assay and Western blotting. Mitochondrial membrane potential (${\Delta}{\Psi}m$) was detected using JC-1. The cell apoptotic percentage was measured by the Annexin V/ propidium iodide (PI) assay, lactate dehydrogenase, and caspase-3 expression. Apoptosis-related proteins, nuclear factor $(NF)-{\kappa}B$, and mitogen-activated protein kinases (MAPK) signaling pathways protein expression were quantified by Western blotting. Results: Our results demonstrated that CK could ameliorate ox-LDL-induced human umbilical vein endothelial cells (HUVECs) inflammation and apoptosis, $NF-{\kappa}B$ nuclear translocation, and the phosphorylation of p38 and c-Jun N-terminal kinase (JNK). Moreover, anisomycin, an activator of p38 and JNK, significantly abolished the anti-apoptotic effects of CK. Conclusion: These results demonstrate that CK prevents ox-LDL-induced HUVECs inflammation and apoptosis through inhibiting the $NF-{\kappa}B$, p38, and JNK MAPK signaling pathways. Thus, CK is a candidate drug for atherosclerosis treatment.

혈관내피세포에서 TNF-α로 유도되는 혈관염증에 대한 쏙(Upogebia major) 효소가수분해물의 억제 효과 (Inhibition Effect of Enzymatic Hydrolysate from Japanese Mud Shrimp Upogebia major on TNF-α-induced Vascular Inflammation in Human Umbilical Vein Endothelial Cells (HUVECs))

  • 김소연;양지은;송재희;맹상현;이지현;윤나영
    • 한국수산과학회지
    • /
    • 제51권2호
    • /
    • pp.127-134
    • /
    • 2018
  • Arteriosclerosis is the major cause of coronary artery and cerebrovascular disease, which are leading causes of death. Pro-inflammatory cytokines induce injury to vascular endothelial cells by increasing cell adhesion molecules, leading to vascular inflammation, a major risk factor for the development of arteriosclerosis. In the current study, we investigated the inhibitory effect of enzymatic hydrolysate from Japanese mud shrimp Upogebia major on the inflammation of tumor necrosis $factor-{\alpha}$ ($TNF-{\alpha}$)-stimulated human umbilical vein endothelial cells (HUVECs). We first evaluated the antioxidant and angiotensin I-converting enzyme (ACE) inhibitory activities of eight U. major enzymatic hydrolysates: alcalase, papain, ${\alpha}$-chymotrypsin (${\alpha}-Chy$), trypsin, pepsin, neutrase, protamex and flavourzyme. Of these, ${\alpha}-Chy$ exhibited potent antioxidant and ACE inhibitory activities. The ${\alpha}-Chy$ hydrolysate was fractionated by two ultrafiltration membranes of 3 and 10 kDa. The ${\alpha}-Chy$ hydrolysate of U. major and its molecular weight cut-off fractions resulted in a significant reduction in NO production and a decrease in cell adhesion molecules [vascular cell adhesion molecule-1 (VCAM-1), intercellular adhesion molecule-1 (ICAM-1) and endothelial-selectin (E-selectin)] and pro-inflammatory cytokines [interleukin-6 (IL-6), interleukin-8 (IL-8) and monocyte chemoattractant protein-1 (MCP-1)] in $TNF-{\alpha}$-stimulated HUVECs. These results suggest that enzymatic hydrolysate from U. major can be used in the control and prevention of vascular inflammation and arteriosclerosis.