• Title/Summary/Keyword: monocots

Search Result 23, Processing Time 0.025 seconds

Ecophysiological characteristcs of Plant Taxon-Specific Calcium Metabolism (식물 분류단위 특이적인 칼슘대사의 생리생태학적 특성)

  • 추연식;송승달
    • The Korean Journal of Ecology
    • /
    • v.21 no.1
    • /
    • pp.47-63
    • /
    • 1998
  • In order to compare species-specific calcium metabolism, we collected 127 species belonging to 40 different families grown on various habitats including saline, limestone, wetland during the 1996 vegetation period, and analyzed their inorganic ion contents. Plants investigated were divided into 5 groups according to their physiological properties: 1) Chenopodiaceae, Aizoaceae, Caryophyllaceae, Portulacaceae and Phytolaccaceae of Centrospermales and Polygonaceae (Polygonales had a little water-soluble $Ca^{2+}$ but contained high contents of insoluble $Ca^{2+}$ particularly as Ca-oxalate (Chenopodiaceae type), 2) Some plant species such as Rosaceae produced oxalate in amounts insufficient to precipitate all incoming $Ca^{2+}$ and thus contained a surplus of dissolved $Ca^{2+}$ (Rosaceae type), 3) The contents of water-soluble $Ca^{2+}$ in plant species of Crassulaceae. Plantaginaceae, Asclepiadaceae, and Zygophyllaceae were equal to or greater than those of K ($K/Ca{\leq}1$; Crassulaceae type), and 4) K/Ca ratios of Compositae were significantly fluctuated depending on species and soil $Ca^{2+}$ level of their habitats (Compositae type). 5) Certain monocots (Gramineae, Cyperaceae, Juncaceae), in contrast to the dicotyledonous plant families mentioned above, showed a very distinct type of calcium metabolism, that is, the K/Ca ratios of 8~10 were maintained indifferently in the species and their habitat types (Graminae type). These results plants within the same taxon have similar physiological aspects as weel as morphological attributes. To understand calcium metabolism of certain plant species, therefore, it is desirable to approach on the basis of physiological concept (calciotroph or calciophobe) rather than the ecological one (calcicole or calcifuge).

  • PDF

Mechanisms of herbicide resistance in weeds

  • Bo, Aung Bo;Won, Ok Jae;Sin, Hun Tak;Lee, Jeung Joo;Park, Kee Woong
    • Korean Journal of Agricultural Science
    • /
    • v.44 no.1
    • /
    • pp.1-15
    • /
    • 2017
  • In major field crops, synthetic herbicides have been used to control weeds worldwide. Globally, herbicide resistance in weeds should be minimized because it is a major limiting factor for food security. Cross resistance can occur with herbicides within the same or in different herbicide families and with the same or different sites of action. Multiple resistance refers to evolved mechanisms of resistance to more than one herbicide (e.g., resistance to both ALS-inhibitors and ACCase-inhibitors) and this resistance was brought about by separate selection processes. Target site resistance could occur from changes at the biochemical site of action of one herbicide. Non target site resistance occurs through mechanisms which reduce the number of herbicide molecules that reach the herbicide target site. There are currently 480 unique cases (species ${\times}$ site of action) of herbicide resistance globally in 252 plant species (145 dicots and 105 monocots). To date, resistance in weeds has been reported to 161 different herbicides, involving 23 of the 26 known herbicide sites of action. Finally, it can be concluded that we can protect crops associated to herbicide resistant weeds by applications of biochemical, genetic and crop control strategies.

Molecular systematics of Poaceae based on eight chloroplast markers, emphasizing the phylogenetic positions of Korean taxa

  • LEE, Jung-Hoon;KIM, Ki-Joong;KIM, Bo-Yun;KIM, Young-Dong
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.3
    • /
    • pp.127-143
    • /
    • 2022
  • This study was conducted to clarify the phylogenetic position and relationships of Korean Poaceae taxa. A total of 438 taxa including 155 accessions of Korean Poaceae (representing 92% and 72% of Korean Poaceous genera and species, respectively) were employed for phylogeny reconstruction. Sequence data of eight chloroplast DNA markers were used for molecular phylogenetic analyses. The resulted phylogeny was mostly concordant with previous phylogenetic hypotheses, especially in terms of subfamilial and tribal relationships. Several taxa-specific indels were detected in the molecular phylogeny, including a 45 bp deletion in rps3 (PACMAD [Panicoideae, Arundinoideae, Chloridoideae, Micrairoideae, Aristidoideae, Danthonioideae] clade), a 15 bp deletion in ndhF (Oryzeae + Phyllorachideae), a 6 bp deletion in trnLF (Poeae s.l.), and two (17 bp and 378 bp) deletions in atpF-H (Pooideae). The Korean Poaceae members were classified into 23 tribes, representing eight subfamilies. The subfamilial and tribal classifications of the Korean taxa were generally congruent with a recently published system, whereas some subtribes and genera were found to be non-monophyletic. The taxa included in the PACMAD clade (especially Andropogoneae) showed very weak and uncertain phylogenetic relationships, presumably to be due to evolutionary radiation and polyploidization. The reconstructed phylogeny can be utilized to update the taxonomic positions of the newly examined grass accessions.

Histological Perturbations of Crop Leaves after Exposure to Simulated Acid Rain;II. For rice, soybean, barley, and radish (인공산성(人工酸性)비에 의한 농작물(農作物) 잎의 조직형태(組織形態) 변화(變化)에 관(關)한 연구(硏究);II. 벼, 콩, 보리, 무에 관하여)

  • Lee, Jong-Sik;Kim, Bok-Jin;Jung, Goo-Bok
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.1
    • /
    • pp.19-24
    • /
    • 1996
  • To investigate the alterations of ultrastructure of leaves by acid rain, 10mm of SAR(Simulated Acid Rain, pH 2.0, 2.5, 2.7, 3.0, 6.0) were applied to 4 crops(rice, soybean, barley, and radish) at the two day interval. The symptoms of leaf damage by SAR were observed by naked eyes and SEM(Scanning Electron Microscope). The results are summarized as follow: Visible leaf injury were more serious in dicots than monocots such as rice and barley with the order of bean, radish, rice, barley. With the SAR treatment of pH 2.0, histological perturbation of trichome were developed in bean and radish. And with the SAR treatment of pH 2.5, stomata of all tested crops except rice were deshaped.

  • PDF

Technical Development for Large DNA Fragment Transformation in Plants

  • Park, Su-Ryun;Seo, Mi-Suk;Lee, Sang-Kug;Park, Jee-Young;Kim, Hye-Ran;Lee, Hyo-Yeon;Bang, Jae-Wook;Lim, Yong-Pyo
    • Journal of Plant Biotechnology
    • /
    • v.2 no.2
    • /
    • pp.89-96
    • /
    • 2000
  • For large DNA fragment transformation in dicots and monocots, BIBAC2 vector system was applied to Arabidopsis thaliana and Oryza sativa L. cv. Jinmi as a model plant, respectively. For Arabidopsis, the Th1 gene in T23L3 BAC clone whose size is about 90 kb was used as the target gene source for transformation. Because T23L3 BAC clone was originally constructed in pBelloBAC11, the target gene was reconstructed into BIBAC2. As the results of reconstruction, 476 colonies were survived in selection medium containing 40 mg/L kanamycin. In colony hybridization analysis, 24 out of 476 colonies exhibited positive signals. In the pulsed-field gel electrophoresis analysis, 11 out of 24 positive clones exhibited the band at the location of 90 kb. In Southern hybridization, positive signal band at the location of 90 kb was observed in all 11 transformants. Using these verified clones, Agrobacterium-mediated transformation was applied to Arabidopsis thaliana th1-201 mutant for genetic complementation test. Twelve thousands T$_1$ seeds were harvested, and antibiotic selection test is being analyzed to verify whether these seeds were transformed. for rice, COR356 that contains 150 kb human genomic DNA in a BIBAC2 vector was used as the target gene. As the results of transformation, 151 out of 210 co-cultivated calli were survived in selection medium containing 5 mg/L hygromycin, and 45 out of 151 survived calli were regenerated into plants. Transformation efficiency was 21.6%. Progeny test using 71 seeds is being analyzed now. These results provide the potential that large DNA fragments can be transferred into both dicots and monocot by Agrobacterium-mediate d transformation system.

  • PDF

OsHSF7 gene in rice, Oryza sativa L., encodes a transcription factor that functions as a high temperature receptive and responsive factor

  • Liu, Jin-Ge;Qin, Qiu-lin;Zhang, Zhen;Peng, Ri-He;Xiong, Ai-Sheng;Chen, Jian-Min;Yao, Quan-Hong
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.16-21
    • /
    • 2009
  • Three novel Class A genes that encode heat shock transcription factor (HSF) were cloned from Oryza Sativa L using a yeast hybrid method. The OsHSF7 gene was found to be rapidly expressed in high levels in response to temperature, which indicates that it may be involved in heat stress reception and response. Over-expression of OsHSF7 in transgenic Arabidopsis could not induced over the expression of most target heat stress-inducible genes of HSFs; however, the transcription of some HSF target genes was more abundant in transgenic plants following two hours of heat stress treatment. In addition, those transgenic plants also had a higher basal thermotolerance, but not acquired thermotolerance. Collectively, the results of this study indicate that OsHSF7 might play an important role in the response to high temperature. Specifically, these findings indicate that OsHSF7 may be useful in the production of transgenic monocots that can over-express protective genes such as HSPs in response to heat stress, which will enable such plants to tolerate high temperatures.

Exploring Responses to Light in the Monocot Model Plant, Brachypodium distachyon

  • Tran, Quynh-Giao;Han, Yun-Jeong;Hwang, Ok-Jin;Hoang, Quyen T.N.;Kim, Jeong-Il
    • Korean Journal of Plant Resources
    • /
    • v.31 no.5
    • /
    • pp.522-530
    • /
    • 2018
  • Brachypodium distachyon has been developed as a monocot model plant for temperate grasses and bioenergy crops. Although B. distachyon research is moving forward rapidly, the study of photoresponses has not been explored. To extend our knowledge of responses to light in monocots, we performed photoresponse analysis of B. distachyon using two inbred lines, Bd21 and Bd21-3. In this study, we first compared growing phenotypes between the two lines and investigated coleoptile and primary leaf growths under dark, far-red, red, and white light conditions. The results showed that the growth of the two lines were similar until tillering stage, but other developmental stages from heading to senescence were much delayed in Bd21-3, which resulted in increased height and tiller numbers. Under different light conditions, primary leaf lengths were kept increasing during the growth period, whereas the coleoptile extension was inhibited 4 to 7 days after growth depending on the light conditions applied. These results suggest that the responses to light in B. distachyon can be examined by measuring coleoptile lengths approximately 7 days after seedling growth. Moreover, we selected light-responsive genes known in Arabidopsis thaliana, such as chlorophyll A/B binding protein (CAB), light-harvesting chlorophyll binding protein (Lhcb) and chalcone synthase (CHS), and confirmed their light-induced gene expression in B. distachyon. Therefore, the present study suggests that the inhibition of coleoptile growth can be used as the parameter to analyze photoresponses in the monocot model plant, and also provide the reference genes whose expression is induced by far-red and red light treatment.

Functional characterization of ABA signaling components using transient gene expression in rice protoplasts

  • Song, In-Sik;Moon, Seok-Jun;Kim, Jin-Ae;Yoon, Insun;Kwon, Taek-Ryoun;Kim, Beom-Gi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.109-109
    • /
    • 2017
  • The core components of ABA-dependent gene expression signaling have been identified in Arabidopsis and rice. This signaling pathway consists of four major components; group A OsbZIPs, SAPKs, subclass A OsPP2Cs and OsPYL/RCARs in rice. These might be able to make thousands of combinations through interaction networks resulting in diverse signaling responses. We tried to characterize those gene functions using transient gene expression for rice protoplasts (TGERP) because it is instantaneous and convenient system. Firstly, in order to monitor the ABA signaling output, we developed reporter system named pRab16A-fLUC which consists of Rab16A promoter of rice and luciferase gene. It responses more rapidly and sensitively to ABA than pABRC3-fLUC that consists of ABRC3 of HVA1 promoter in TGERP. We screened the reporter responses for over-expression of each signaling components from group A OsbZIPs to OsPYL/RCARs with or without ABA in TGERP. OsbZIP46 induced reporter most strongly among OsbZIPs tested in the presence of ABA. SAPKs could activate the OsbZIP46 even in the ABA independence. Subclass A OsPP2C6 and -8 almost completely inhibited the OsbZIP46 activity in the different degree through the SAPK9. Lastly, OsPYL/RCAR2 and -5 rescued the OsbZIP46 activity in the presence of SAPK9 and OsPP2C6 dependent on ABA concentration and expression level. By using TGERP, we could characterize successfully the effects of ABA dependent gene expression signaling components in rice. In conclusion, TGERP represents very useful technology to study systemic functional genomics in rice or other monocots.

  • PDF

Widespread Occurrence of Small Inversions in the Chloroplast Genomes of Land Plants

  • Kim, Ki-Joong;Lee, Hae-Lim
    • Molecules and Cells
    • /
    • v.19 no.1
    • /
    • pp.104-113
    • /
    • 2005
  • Large inversions are well characterized in the chloroplast genomes of land plants. In contrast, reports of small inversions are rare and involve limited plant groups. In this study, we report the widespread occurrence of small inversions ranging from 5 to 50 bp in fully and partially sequenced chloroplast genomes of both monocots and dicots. We found that small inversions were much more common than large inversions. The small inversions were scattered over the chloroplast genome including the IR, SSC, and LSC regions. Several small inversions were uncovered in chloroplast genomes even though they shared the same overall gene order. The majority of these small inversions were located within 100 bp downstream of the 3' ends of genes. All had inverted repeat sequences, ranging from 11 to 24 bp, at their ends. Such small inversions form stem-loop hairpin structures that usually have the function of stabilizing the corresponding mRNA molecules. Intra-molecular recombination between the inverted sequences in the stem-forming regions are responsible for generating flip-flop orientations of the loops. The presence of two different orientations of the stem-loop in the trnL-F noncoding region of a single species of Jasminum elegans suggests that a short inversion can be generated within a short period of time. Small inversions of non-coding sequences may influence sequence alignment and character interpretation in phylogeny reconstructions, as shown in nine species of Jasminum. Many small inversions may have been generated by parallel or back mutation events during chloroplast genome evolution. Our data indicate that caution is needed when using chloroplast non-coding sequences for phylogenetic analysis.

Isolation of Endophytic Fungi Capable of Plant Growth Promotion from Monocots Inhabited in the Coastal Sand Dunes of Korea (사구에 서식하는 단자엽식물로부터 식물 생장 촉진 활성 내생 진균류의 분리)

  • Khan, Sumera Afzal;Hamayun, Muhammad;Rim, Soon-Ok;Lee, In-Jung;Seu, Jong-Chul;Choo, Yeon-Sik;Jin, Ing-Nyol;Kim, Sang-Dal;Lee, In-Koo;Kim, Jong-Guk
    • Journal of Life Science
    • /
    • v.18 no.10
    • /
    • pp.1355-1359
    • /
    • 2008
  • Endophytic fungi predominantly inhabit grasses, and produce a variety of beneficial metabolites for plant growth, as well as help their hosts against pathogens and herbivores. Current study was focused on plant growth promoting activity of endophytic fungi inhabited in the roots of sand dune grasses. We collected 49 fungal isolates from the roots of four most common sand dune grasses and screened them for their growth promoting capacity. Results showed that 37 fungal isolates (75.5%) promoted plant height and shoot length of waito-c rice, 11 fungal isolates (22.5%) suppressed it, while 1 fungus (2%) showed no effect on the growth attributes. The fungal strain Gibberella fujikuroi, along with distilled water and Czapek broth medium, were taken as control for this experiment. It was concluded that a major proportion of endophytic fungi inhabited in the sand dune plants produce metabolites, and thus help in growth and development of the host plant.