Browse > Article

Widespread Occurrence of Small Inversions in the Chloroplast Genomes of Land Plants  

Kim, Ki-Joong (School of Life Sciences and Biotechnology, Korea University)
Lee, Hae-Lim (School of Life Sciences and Biotechnology, Korea University)
Abstract
Large inversions are well characterized in the chloroplast genomes of land plants. In contrast, reports of small inversions are rare and involve limited plant groups. In this study, we report the widespread occurrence of small inversions ranging from 5 to 50 bp in fully and partially sequenced chloroplast genomes of both monocots and dicots. We found that small inversions were much more common than large inversions. The small inversions were scattered over the chloroplast genome including the IR, SSC, and LSC regions. Several small inversions were uncovered in chloroplast genomes even though they shared the same overall gene order. The majority of these small inversions were located within 100 bp downstream of the 3' ends of genes. All had inverted repeat sequences, ranging from 11 to 24 bp, at their ends. Such small inversions form stem-loop hairpin structures that usually have the function of stabilizing the corresponding mRNA molecules. Intra-molecular recombination between the inverted sequences in the stem-forming regions are responsible for generating flip-flop orientations of the loops. The presence of two different orientations of the stem-loop in the trnL-F noncoding region of a single species of Jasminum elegans suggests that a short inversion can be generated within a short period of time. Small inversions of non-coding sequences may influence sequence alignment and character interpretation in phylogeny reconstructions, as shown in nine species of Jasminum. Many small inversions may have been generated by parallel or back mutation events during chloroplast genome evolution. Our data indicate that caution is needed when using chloroplast non-coding sequences for phylogenetic analysis.
Keywords
Chloroplast Genome; Flip-Flop Mechanism; Free Energy; Intra-molecular Recombination; Inverted Repeat; Jasminum; Short Inversion; Stem-Loop Formation;
Citations & Related Records

Times Cited By Web Of Science : 27  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Doyle, J. J., Davis, J. I., Soreng, R. J., Garvin, D., and Anderson, M. J. (1992) Chloroplast DNA inversions and the origin of the grass family (Poaceae). Proc. Natl. Acad. Sci. USA 89, 7722-.7726
2 Doyle, J. J., Doyle, J. L., Ballenger, J. A., and Palmer, J. D. (1996) The distribution and phylogenetic significance of a 50-kb chloroplast DNA inversion in the flowering plant family Leguminosae. Mol. Phylog. Evol. 5, 429-.438   DOI   ScienceOn
3 Hiratsuka, J., Shimada, H., Whittier, R., Ishibashi, T., Sakamota, M., et al. (1989) The complete sequence of the rice (Oryza sativa) chloroplast genome: intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of the cereals. Mol. Gen. Genet. 217, 185-.194   DOI
4 Hupfer, H., Swiatek, M., Hornung, S., Herrmann, R. G., Maier, Ki-Joong Kim & Hae-Lim Lee 113 R. M., et al. (2000) Complete nucleotide sequence of the Oenothera elata plastid chromosome, representing plastome I of the five distinguishable Euoenothera plastomes. Mol. Gen. Genet. 263, 581-.585
5 Kim, K.-J. and Jansen, R. K. (1994) Comparisions of phylogenetic hypotheses among different data sets in dwarf dandelions (Krigia): additional information from internal transcribed spacer sequences of nuclear ribosomal DNA. Pl. Syst. Evol. 190, 157-.185   DOI
6 Kumar, S., Tamura, K., Jakobsen, I. B., and Nei, M. (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17, 1244-.1245   DOI   ScienceOn
7 Lee, S. S., Jeong W. J., Bae J. M., Bang J. W., Liu J. R., et al. (2004) Characterization of the plastid-encoded carboxyltransferase subunit (accD) gene of potato. Mol. Cells 17, 423-.429
8 Milligan, B. G., Hampton, J. N., and Palmer, J. D. (1989) Dispersed repeats and structural reorganization in subclover chloroplast DNA. Mol. Biol. Evol. 6, 355-.368
9 Ogihara, Y., Isono, K., Kojima, T., Endo, A., Hanaoka, M., et al. (2002) Structural features of a wheat plastome as revealed by complete sequencing of chloroplast DNA. Mol. Genet. Genomics 266, 740-.746   DOI
10 Shimada, H. and Sugiura, M. (1989) Pseudogenes and short repeated sequences in the rice chloroplast genome. Curr. Genet. 16, 293-.301   DOI
11 Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., and Higgins, D. G. (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24, 4876-.4882
12 Sugiura, M. (1989) The chloroplast chromosomes in land plants. Annu. Rev. Cell Biol. 5, 51-.70   DOI
13 Wakasugi, T., Tsudzuki, J., Ito, S., Nakashima, K., Tsudzuki, T., et al. (1994) Loss of all ndh genes as determined by sequencing the entire chloroplast genome of the black pine Pinus thunbergii. Proc. Natl. Acad. Sci. USA 91, 9794-.9798
14 Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406-.3415   DOI   ScienceOn
15 Palmer, J. D. (1990) Contrasting modes and tempos of genome evolution in land plant organelles. Trends Genet. 6, 115-.120   DOI   ScienceOn
16 Swofford, D. L. (2002) PAUP 4.0. Computer program and documentation. Sinauer Asso., Suderland Massachusetts
17 Baas, P., Esser, P. M., van der Western, M.E.T., and Zandee, M. (1988) Wood anatomy of the Oleaceae. IAWA Bull. 9, 103-.182
18 Palmer, J. D. (1986) Isolation and structural analysis of chloroplast DNA; in Methods in Enzymology, Vol. 118, Weissbach, A. and Weissbach, H. (eds.), pp. 167-.186, Academic Press, New York
19 Howe, C. J., Barker, R. F., Bowman, C. M., and Dyer, T. A. (1988) Common features of three inversions in wheat chloroplast DNA. Curr. Genet. 13, 343-.349   DOI
20 Maier, R. M., Neckermann, K., Igloi, G. L., and Kossel, H. (1995) Complete sequence of the maize chloroplast genome: gene content, hotspots of divergence and fine tuning of genetic information by transcript editing. J. Mol. Biol. 251, 614-.628   DOI   ScienceOn
21 Taberlet, P., Gielly, L., Pautou, G., and Bouvet, J. (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Pl. Mol. Biol. 17, 1105-.1109   DOI
22 Kurtz, S., Choudhuri, J. V., Ohlebusch, E., Schleiermacher, C., Stoye, J., et al. (2001) REPuter: the manifold applications of repeat analysis on a genomic scale. Nucleic Acids Res. 29, 4633-.4642   DOI   ScienceOn
23 Kimura, M. (1980) A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111-.120   DOI
24 Rohwer, J. G. (1994) Seed characters in Jasminum (Oleaceae):unexpected support for De Candolle's sections. Bot. Jahrb. Syst. 116, 299-.319
25 Raubeson, L. A. and Jansen R. K. (1992) Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science 255, 1697-.1699   DOI   ScienceOn
26 Jansen, K. R. and Palmer, J. D. (1987) A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proc. Natl. Acad. Sci. USA 84, 5818-.5822
27 Kelchner, S. A. and Wendel, J. F. (1996) Hairpins create minute inversions in non-coding regions of chloroplast DNA. Curr. Genet. 30, 259-.262   DOI
28 Ogihara, Y., Terachi, T., and Sasakuma, T. (1988) Intramolecular recombination of chloroplast genome mediated by short direct-repeat sequences in wheat species. Proc. Natl. Acad. Sci. USA 85, 8573-.8577
29 Kim, K.-J. and Lee, H.-L. (2004) Complete chloroplast genome sequences from Korean ginseng (Panax schinseng Nees) and comparative analysis of sequence evolution among 17 vascular plants. DNA Res. 11, 247-.261   DOI
30 Doyle, J. J. and Doyle, J. L. (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem. Bull. 19, 11-.15
31 Shinozaki, K., Hayashida, N., and Sugiura, M. (1988) Nicotiana chloroplast genes for components of the photosynthetic apparatus. Photosynthesis Res. 18, 7-.31   DOI   ScienceOn
32 Kato, T., Kaneko, T., Sato, S., Nakamura, Y., and Tabata, S. (2000) Complete structure of the chloroplast genome of a legume, Lotus japonicus. DNA Res. 7, 323-.330   DOI
33 Kanno, A. and Hirai, A. (1993) A transcription map of the chloroplast genome from rice (Oryza sativa). Curr. Genet. 23, 166-.174   DOI
34 Asano, T., Tsudzuki, T., Takahashi, S., Shimada, H., and Kadowaki, K. (2004) Complete nucleotide sequence of the surgacane (Saccharum officinarum) chloroplast genome: a comparative analysis of four monocot chloroplast genomes. DNA Res. 11, 93-.99   DOI
35 Schmitz-Linneweber, C., Regel, R., Du, T. G., Hupfer, H., Herrmann, R. G., et al. (2002) The Plastid Chromosome of Atropa belladonna and its comparison with that of Nicotiana tabacum: the role of RNA editing in generating divergence in the process of plant speciation. Mol. Biol. Evol. 19, 1602-.1612   ScienceOn
36 Shinozaki, K., Ohme, M., Tanaka, M., Wakasugi, T., Hayashida, N., et al. (1986) The complete nucleotide sequence of tobacco chloroplast genome: its gene organization and expression. EMBO J. 5, 2043-.2049
37 Graham, S. W. and Olmstead, R. G. (2000) Evolutionary significance of an unusual chloroplast DNA inversion found in two basal angiosperm lineages. Curr. Genet. 37, 183-.188   DOI
38 Mast, A. R., Feller, D. M., Kelso, S., and Conti, E. (2004) Buzzpollinated Dodecatheon originated from within the heterostylous Primula subgenus Auriculastrum (Primulaceae): a seven-region cpDNA phylogeny and its implications for floral evolution. Am. J. Bot. 91, 926-.942   DOI   ScienceOn
39 Palmer, J. D. (1991) Plastid chromosomes: structure and evolution;in Cell Culture and Somatic Cell Genetics in Plants, Vol. 7A, The Molecular Biology of Plastids, Vasil, I. K. and Bogorad, L. (eds.), pp. 5-.53, Academic Press, San Diego