• Title/Summary/Keyword: monitoring module

Search Result 838, Processing Time 0.022 seconds

Source Identification in 2-Dimensional Scattering Field Based on Inverse Problem (역문제를 이용한 2차원 산란장에서의 소스 추정)

  • Kim, Tae Yong;Lee, Hoon-Jae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.6
    • /
    • pp.1262-1268
    • /
    • 2014
  • Inverse problem is very interest in the sciences and engineering, in particular for modeling and monitoring applications. By applying inverse problem, it can be widely used to exploration of mineral resources, identification of underground cables and buried pipelines, and diagnostic imaging in medical area. In this paper, we firstly consider 2-dimensional EM scattering problem and present the FDTD method to estimate unknown source. In this case, non-linear CGM technique is used to investigate unknown sources corresponding to measured data obtained from forward problem in near field. The proposed technique for solving the inverse source problem presents a reasonable agreement and can be applied to investigate an internal source signal of embedded security module.

A Study on Solar Power Generation Efficiency Empirical Analysis according to Temperature and Wind speed (온도와 풍속에 따른 태양광발전 효율 실증분석 연구)

  • Cha, Wang-Cheol;Park, Joung-Ho;Cho, Uk-Rae;Kim, Jae-Chul
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.64 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • Factors that have influence on solar power generation are specified into three aspects such as meteorological, geographical factors as well as equipment installation. Meteorological factors influence the most among the three. Insolation, sunshine hours, and cloud directly influence on solar power generation, whereas temperature and wind speed have impacts on equipment installation. This paper provides explanation over temperature-wind speed equation by calculating influence of temperature and wind speed on equipment installation. In order to conduct a research, pyranometer, anemometer, air thermometer, module thermometer are installed in 2MWp solar power plant located in South Cholla province, so that real-time meteorological data and generating amount can be analyzed through monitoring system. Besides, if existing and new methods are applied together, accuracy of prediction for generating amount is improved.

Supervisory Control of a Face Milling Operation in different Manufacturing Environments

  • Landers, Robert G.;Ulsoy, A.Galip
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • The promise of improved productivity and quality has lead to numerous research investigations in machining process monitoring and control. Recent studies have demonstrated that careful attention must be paid to the regulation of multiple process modules within a single operation such that each module performs its function properly and adverse interactions between modules do not occur. This had lead to the development of supervisory control; particularly to the development of methodologies to systemati-cally construct and implement these controllers. However, no research study has investigated the effect of the production environ-ment on the design of supervisor controllers. In this paper, the design of supervisory controllers for various production environ-ment is studied. The design approach given in Landers and Ulsoy(1998) is applied to construct two supervisory machining control-lers that are experimentally implemented in a face milling operation. Comparisons with an experimental implementation without process control illustrate the benefits of utilizing process controllers that are coordinated properly. The results also show that the given design approach may be used to construct supervisory controllers for different types of production environments.

  • PDF

Preliminary Design of Power Control and Distribution Unit for LEO Application (저궤도 위성 응용을 위한 전력조절분배기 설계)

  • Park, Sung-Woo;Park, Hee-Sung;Jang, Jin-Baek;Jang, Sung-Soo;Lee, Sang-Kon
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.55-57
    • /
    • 2007
  • A Power control and Distribution Unit (PCDU) plays roles of protection of battery against overcharge by active control of solar array generated power, distribution of unregulated electrical power via controlled outlets to bus and instrument units, distribution of regulated electrical power to selected bus and instrument units, and provision of status monitoring and telecommand interface allowing the system and ground operate the power system, evaluate its performance and initiate appropriate countermeasures in case of abnormal conditions. In this work, we perform the preliminary design of a PCDU for the small Low Earth Orbit (LEO) Satellite applications. The main constitutes of the PCDU are the battery interface module, solar array regulators with maximum power point tracking (MPPT) technology, heater power distribution modules, internal converter modules for regulated bus voltage generation, power distribution modules of unregulated and regulated primary bus, and instrument power distribution modules.

  • PDF

Landslide Detection using Wireless Sensor Networks (사면방재를 위한 무선센서 네트워크 기술연구)

  • Kim, Hyung-Woo;Lee, Bum-Gyo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.369-372
    • /
    • 2008
  • Recently, landslides have frequently occurred on natural slopes during periods of intense rainfall. With a rapidly increasing population on or near steep terrain in Korea, landslides have become one of the most significant natural hazards. Thus, it is necessary to protect people from landslides and to minimize the damage of houses, roads and other facilities. To accomplish this goal, many landslide prediction methods have been developed in the world. In this study, a simple landslide prediction system that enables people to escape the endangered area is introduced. The system is focused to debris flows which happen frequently during periods of intense rainfall. The system is based on the wireless sensor network (WSN) that is composed of sensor nodes, gateway, and server system. Sensor nodes comprising a sensing part and a communication part are developed to detect ground movement. Sensing part is designed to measure inclination angle and acceleration accurately, and communication part is deployed with Bluetooth (IEEE 802.15.1) module to transmit the data to the gateway. To verify the feasibility of this landslide prediction system, a series of experimental studies was performed at a small-scale earth slope equipped with an artificial rainfall dropping device. It is found that sensing nodes installed at slope can detect the ground motion when the slope starts to move. It is expected that the landslide prediction system by wireless senor network can provide early warnings when landslides such as debris flow occurs.

  • PDF

Container Flow Management in Port Logistics Based on BPM Framework

  • Nisafani, Amna Shifia;Park, Jaehun;Bae, Hyerim;Yahya, Bernardo Nugroho
    • Journal of Information Technology and Architecture
    • /
    • v.9 no.1
    • /
    • pp.1-10
    • /
    • 2012
  • To promote process effectiveness and efficiency, it is necessary that port logistics employ automated equipments for handling containers. There exists a system for automatically managing the container flow, called Control Module. However, it has limitation to assign the execution order to the machine and monitor the container flow in real time process. Business process management (BPM) provides a suitable and effective framework to address this problem including controlling and monitoring the flow of each container. Since the nature of container handling process is different with the common process in BPM that is conducted by human performer, it is necessary to adjust the BPM framework in the domain of port logistic management. This study presents a BPM framework corresponds with both human-based and machine-based activity to enhance the efficiency of port process flow including container flow. This framework is introduced as an integrated approach and mechanism of BPM application into the container handling system for the purpose of port logistics process automation.

Development of the Chemical Flow Control System for Spinner Equipment in Semiconductor Manufacturing Process (반도체 제조공정의 스피너 장비를 위한 약액 흐름제어 시스템 개발)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1812-1816
    • /
    • 2011
  • This research developed chemical flow control system(CFCS) essential for spinner equipment in nano semiconductor manufacturing process under the 100nm to prevent complex process defect due to missing spread after chemical injection. The devices developed in this research, which can be swiftly replaced in case abnormal state element changes or wafer manufacturing defect occurs, are anticipated to improve module yield as well as real-time monitoring on the state element. In addition, as a result of mounting H/W and S/W system to control detailed operation sequence in production line and executing performance check and verification, we can be exactly detected in five abnomal process type.

Study on the FPCS for Photoresist Coating of Semiconductor Manufacturing Process (반도체 생산공정의 감광액 도포를 위한 FPCS에 관한 연구)

  • Park, Hyoung-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4467-4471
    • /
    • 2013
  • In this research, developed full-scan photoresist coating system(FPCS) can improve the efficiency of the photoresist coating system essential for spinner equipment in nano semiconductor manufacturing process. The devices developed in this research, which can be swiftly replaced in case abnormal state element changes or wafer manufacturing defect occurs, are anticipated to improve module yield as well as real-time monitoring on the state element in order to prevent the complex process defect due to the photoresist miss coating.

The development of radiation lifetime measuring module for KAEROT/m2 (KAEROT/m2용 방사선 수명 측정모듈 개발)

  • Lee, Nam-Ho;Kim, Seung-Ho;Kim, Yang-Mo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.793-796
    • /
    • 2003
  • The electronics of a mobile robot ill nuclear facilities is required to satisfied the reliability to sustain survival in its radiation environment. To know how much radiation the robot has been encountered to replace sensitive electronic parts, a dosimeter to measure total accumulated dose is necessary. Among many radiation dosimeters or detectors, semiconductor radiation sensors have advantages in terms of power requirements and their sires over conventional detectors. This paper describes the use of the radiation-induced threshold voltage change of a commercial power pMOSFET as an accumulated radiation dose monitoring mean and that of the photo-current of a commercial PIN Diode as a dose-rate measurement mean. Commercial p-type power MOSFETs and PIN Diodes were tested in a Co-60 gamma irradiation facility to see their capabilities as radiation sensors. We found an inexpensive commercial power pMOSFET that shows good linearity in their threshold voltage shift with radiation dose and a PIN diode that shows good linearity in its photo-current change with dose-rate. According to these findings, a radiation hardened hybrid electronic radiation dosimeter for nuclear robots has been developed for the first time. This small hybrid dosimeter has also an advantage in the point of view of reliability improvement by using a diversity concept.

  • PDF

AN OVERVIEW OF RISK QUANTIFICATION ISSUES FOR DIGITALIZED NUCLEAR POWER PLANTS USING A STATIC FAULT TREE

  • Kang, Hyun-Gook;Kim, Man-Cheol;Lee, Seung-Jun;Lee, Ho-Jung;Eom, Heung-Seop;Choi, Jong-Gyun;Jang, Seung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.41 no.6
    • /
    • pp.849-858
    • /
    • 2009
  • Risk caused by safety-critical instrumentation and control (I&C) systems considerably affects overall plant risk. As digitalization of safety-critical systems in nuclear power plants progresses, a risk model of a digitalized safety system is required and must be included in a plant safety model in order to assess this risk effect on the plant. Unique features of a digital system cause some challenges in risk modeling. This article aims at providing an overview of the issues related to the development of a static fault-tree-based risk model. We categorize the complicated issues of digital system probabilistic risk assessment (PRA) into four groups based on their characteristics: hardware module issues, software issues, system issues, and safety function issues. Quantification of the effect of these issues dominates the quality of a developed risk model. Recent research activities for addressing various issues, such as the modeling framework of a software-based system, the software failure probability and the fault coverage of a self monitoring mechanism, are discussed. Although these issues are interrelated and affect each other, the categorized and systematic approach suggested here will provide a proper insight for analyzing risk from a digital system.