• Title/Summary/Keyword: monitoring camera

Search Result 750, Processing Time 0.033 seconds

Estimation of tomato maturity as a continuous index using deep neural networks

  • Taehyeong Kim;Dae-Hyun Lee;Seung-Woo Kang;Soo-Hyun Cho;Kyoung-Chul Kim
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.4
    • /
    • pp.837-845
    • /
    • 2022
  • In this study, tomato maturity was estimated based on deep learning for a harvesting robot. Tomato images were obtained using a RGB camera installed on a monitoring robot, which was developed previously, and the samples were cropped to 128 × 128 size images to generate a dataset for training the classification model. The classification model was constructed based on convolutional neural networks, and the mean-variance loss was used to learn implicitly the distribution of the data features by class. In the test stage, the tomato maturity was estimated as a continuous index, which has a range of 0 to 1, by calculating the expected class value. The results show that the F1-score of the classification was approximately 0.94, and the performance was similar to that of a deep learning-based classification task in the agriculture field. In addition, it was possible to estimate the distribution in each maturity stage. From the results, it was found that our approach can not only classify the discrete maturation stages of the tomatoes but also can estimate the continuous maturity.

The Application of Unmanned Aerial Photograpy for Effective Monitoring of Marine Debris (해안표착물의 효율적인 모니터링을 위한 무선 조정 항공기 촬영기법의 적용)

  • Jang, Seon-Woong;Lee, Seong-Kyu;Oh, Seung-Yeol;Kim, Dae-Hyun;Yoon, Hong-Joo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.17 no.4
    • /
    • pp.307-314
    • /
    • 2011
  • This study proposed detection method of Marine debris using unmanned aerial photography. For unmanned aerial photography, a RC(Radio Control) helicopter which has good movability and economics was used. To a camera mounting, a gimbal equipment was attached to the bottom of the RC helicopter. The gimbal equipment is very useful because it is not seriously affected by vibration and rolling. In addition, we invented that digital image processing algorithm using Matlab program for detection of marine debris from photographs. Particularly, background subtraction in invented algorithm was applied. As a result, marine debris of a variety of forms from different sand states of coast were reliably detected. In the future, monitoring using proposed method was expected to contribute that the solution to representative problem of monitoring area selecting and estimate the total litter mass over the beach. Moreover, It is considered a greater application possibility to marine environmental observations.

Autonomous Surveillance-tracking System for Workers Monitoring (작업자 모니터링을 위한 자동 감시추적 시스템)

  • Ko, Jung-Hwan;Lee, Jung-Suk;An, Young-Hwan
    • 전자공학회논문지 IE
    • /
    • v.47 no.2
    • /
    • pp.38-46
    • /
    • 2010
  • In this paper, an autonomous surveillance-tracking system for Workers monitoring basing on the stereo vision scheme is proposed. That is, analysing the characteristics of the cross-axis camera system through some experiments, a optimized stereo vision system is constructed and using this system an intelligent worker surveillance-tracking system is implemented, in which a target worker moving through the environments can be detected and tracked, and its resultant stereo location coordinates and moving trajectory in the world space also can be extracted. From some experiments on moving target surveillance-tracking, it is analyzed that the target's center location after being tracked is kept to be very low error ratio of 1.82%, 1.11% on average in the horizontal and vertical directions, respectively. And, the error ratio between the calculation and measurement values of the 3D location coordinates of the target person is found to be very low value of 2.5% for the test scenario on average. Accordingly, in this paper, a possibility of practical implementation of the intelligent stereo surveillance system for real-time tracking of a target worker moving through the environments and robust detection of the target's 3D location coordinates and moving trajectory in the real world is finally suggested.

Study on Measurement Condition Effects of CRP-based Structure Monitoring Techniques for Disaster Response (재해 대응을 위한 CRP기반 시설물 모니터링 기법의 계측조건 영향 분석)

  • Lee, Donghwan;Leem, Junghyun;Park, Jihwan;Yu, Byoungjoon;Park, Seunghee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.541-547
    • /
    • 2017
  • Climate change has become the main cause of the exacerbation in natural disasters. Social Overhead Capital(SOC) structure needs to be checked for displacement and crack periodically to prevent damage and the collapse caused by natural disaster and ensure the safety. For efficient structure maintenance, the optical image technology is applied to the Structure Health Monitoring(SHM). However, optical image is sensitive to environmental factors. So it is necessary to verify its validity. In this paper, the accuracy of estimating the vertical displacement was verified with respect to environmental condition such as natural light, measurement distance, and the number of image sheets. The result of experiments showed that the effect of natural light on accuracy of estimating vertical displacement was the greatest of all. The measurement angle which was affected by the change in measurement distance was also important to check the vertical displacement. These findings will be taken into account by applying appropriate environmental condition to minimize errors when the bridge was measured by camera. It will also enable the application of optical images to the SHM.

Design and Implementation of IP Video Wall System for Large-scale Video Monitoring in Smart City Environments (스마트 시티 환경에서 대규모 영상 모니터링을 위한 IP 비디오 월 시스템의 설계 및 구현)

  • Yang, Sun-Jin;Park, Jae-Pyo;Yang, Seung-Min
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.9
    • /
    • pp.7-13
    • /
    • 2019
  • Unlike a typical video wall system, video wall systems used for integrated monitoring in smart city environments should be able to display various videos, images, and texts simultaneously. In this paper, we propose an Internet Protocol (IP)-based video wall system that has no limit on the number of videos that can be monitored simultaneously, and that can arrange the monitor screen layout without restrictions. The proposed system is composed of multiple display servers, a wall controller, and video source providers, and they communicate with each other through an IP network. Since the display server receives and decodes the video stream directly from the video source devices, and displays it on the attached monitor screens, more videos can be simultaneously displayed on the entire video wall. When one video is displayed over several screens attached to multiple display servers, only one display server receives the video stream and transmits it to the other display servers by using IP multicast communications, thereby reducing the network load and synchronizing the video frames. Experiments show that as the number of videos increases, a system consisting of more display servers shows better decoding and rendering performance, and there is no performance degradation, even if the display server continues to be expanded.

Intelligent Hospital Information System Model for Medical AI Research/Development and Practical Use (의료인공지능 연구/개발 및 실용화를 위한 지능형 병원정보시스템 모델)

  • Shon, Byungeun;Jeong, Sungmoon
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.67-75
    • /
    • 2022
  • Medical information is variously generated not only from medical devices but also from electronic devices. Recently, related convergence technologies from big data collection in healthcare to medical AI products for patient's condition analysis are rapidly increasing. However, there are difficulties in applying them because of independent developmental procedures. In this paper, we propose an intelligent hospital information system (iHIS) model to simplify and integrate research, development and application of medical AI technology. The proposed model includes (1) real-time patient data management, (2) specialized data management for medical AI development, and (3) real-time monitoring for patient. Using this, real-time biometric data collection and medical AI specialized data generation from patient monitoring devices, as well as specific AI applications of camera-based patient gait analysis and brain MRA-based cerebrovascular disease analysis will be introduced. Based on the proposed model, it is expected that it will be used to improve the HIS by increasing security of data management and improving practical use through consistent interface platformization.

Annual Variation on Observation and Activity Pattern of Korean Chipmunk (Tamias sibiricus) in the Seoraksan and Jirisan National Parks, South Korea (설악산과 지리산 국립공원에 서식하는 다람쥐의 연중 관찰 양상과 행동 패턴)

  • Eom, Tae-Kyung;Lee, Jae-Kang;Lee, Dong-Ho;Ko, Hyeongyu;Bae, Ho-Kyoung;Kim, Kyu-Jung;Hwang, Hyun-Su;Park, Go Eun;Choi, Won-Il;Lim, Jong-Hwan;Park, Chan-Ryul;Rhim, Shin-Jae
    • Korean Journal of Environment and Ecology
    • /
    • v.36 no.4
    • /
    • pp.361-367
    • /
    • 2022
  • This study was conducted to identify annual variation of observation and activity pattern of Korean chipmunk (Tamias sibiricus) using camera traps in the Seoraksan and Jirisan National Parks, South Korea from May 2019 to May 2021. The annual variation was identified based on the observed frequency through weekly observations. Daily activity patterns of the species were also analyzed by season. The daily activity pattern of chipmunk appeared to be constantly diurnal across the years regardless of habitat or season. The Korean chipmunks living in the two different regions were observed in different time periods throughout the year. While the chipmunks inhabiting the Seoraksan were observed from 18th to 45th week, the chipmunks inhabiting the Jirisan National Park were observed from 7th to 48th week. This may be influenced by the hibernation period of chipmunks in the two different regions. In both regions, chipmunks were most frequently observed in autumn. It is considered that seasonal variation on population dynamic and activity patterns of chipmunks were reflected in the observation frequency. Although the observation frequency of camera trap is an indirect indicator and thus having a limitation that it cannot distinguish the population density and amount of activity for the target species, camera trapping is still an effective survey technique for monitoring mammals due to its high accessibility and easy use.

Methodology for Vehicle Trajectory Detection Using Long Distance Image Tracking (원거리 차량 추적 감지 방법)

  • Oh, Ju-Taek;Min, Joon-Young;Heo, Byung-Do
    • International Journal of Highway Engineering
    • /
    • v.10 no.2
    • /
    • pp.159-166
    • /
    • 2008
  • Video image processing systems (VIPS) offer numerous benefits to transportation models and applications, due to their ability to monitor traffic in real time. VIPS based on a wide-area detection algorithm provide traffic parameters such as flow and velocity as well as occupancy and density. However, most current commercial VIPS utilize a tripwire detection algorithm that examines image intensity changes in the detection regions to indicate vehicle presence and passage, i.e., they do not identify individual vehicles as unique targets. If VIPS are developed to track individual vehicles and thus trace vehicle trajectories, many existing transportation models will benefit from more detailed information of individual vehicles. Furthermore, additional information obtained from the vehicle trajectories will improve incident detection by identifying lane change maneuvers and acceleration/deceleration patterns. However, unlike human vision, VIPS cameras have difficulty in recognizing vehicle movements over a detection zone longer than 100 meters. Over such a distance, the camera operators need to zoom in to recognize objects. As a result, vehicle tracking with a single camera is limited to detection zones under 100m. This paper develops a methodology capable of monitoring individual vehicle trajectories based on image processing. To improve traffic flow surveillance, a long distance tracking algorithm for use over 200m is developed with multi-closed circuit television (CCTV) cameras. The algorithm is capable of recognizing individual vehicle maneuvers and increasing the effectiveness of incident detection.

  • PDF

Active Object Tracking System based on Stereo Vision (스테레오 비젼 기반의 능동형 물체 추적 시스템)

  • Ko, Jung-Hwan
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.159-166
    • /
    • 2016
  • In this paper, an active object tracking system basing on the pan/tilt-embedded stereo camera system is suggested and implemented. In the proposed system, once the face area of a target is detected from the input stereo image by using a YCbCr color model and phase-type correlation scheme and then, using this data as well as the geometric information of the tracking system, the distance and 3D information of the target are effectively extracted in real-time. Basing on these extracted data the pan/tilted-embedded stereo camera system is adaptively controlled and as a result, the proposed system can track the target adaptively under the various circumstance of the target. From some experiments using 480 frames of the test input stereo image, it is analyzed that a standard variation between the measured and computed the estimated target's height and an error ratio between the measured and computed 3D coordinate values of the target is also kept to be very low value of 1.03 and 1.18% on average, respectively. From these good experimental results a possibility of implementing a new real-time intelligent stereo target tracking and surveillance system using the proposed scheme is finally suggested.

Toxicity and Behavioral Changes of Medaka (Oryzias latipes) by Brine Exposure (송사리(Oryzias latipes)를 이용한 고염해수의 생태독성 및 단기적 행동변화에 관한 연구)

  • Yoon, Sung-Jin;Park, Gyung-Soo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.16 no.1
    • /
    • pp.39-51
    • /
    • 2011
  • Acute toxicity test and behavioral change analysis of seawater acclimated Japanese medaka were conducted to identify the brine effects on fish by seawater desalination. 7 day acute toxicity test of brine revealed linear concentration-response relationship from 40.0~80.0 psu treatment groups. There was no significant brine effect for 30-40 psu groups and mass mortality was observed from >50 psu exposure (7-day $LC_{50}$=51.4 psu). Images from the real time camera system were analyzed to observe the changes in behavioral patterns of medaka exposed to various salinity. 40.0 and 50.0 psu exposed groups were stabilized in behavioral patterns after 3.1 and 4.6 hours, respectively and 60.0 psu group showed sharp increase in activity during first 12 hours and 50% mortality thereafter. Similar patterns were observed to 70 and 80 psu groups and both experimental groups showed 100% mortality within 12 hours. Acute toxicity test and behavioral patterns showed very similar toxicity results which revealed the increases in mortality and behavioral activities from 50.0 psu. This critical salinity for fish impacts must be implemented to brine discharge strategy by seawater desalination into the coastal area. Also, we recommend that real time camera monitoring system must be a useful tool for early warning of fish toxicity for other applications. This research was funded by Ministry of Land, Transport and Maritime Affairs, Korea.