DOI QR코드

DOI QR Code

Toxicity and Behavioral Changes of Medaka (Oryzias latipes) by Brine Exposure

송사리(Oryzias latipes)를 이용한 고염해수의 생태독성 및 단기적 행동변화에 관한 연구

  • 윤성진 (안양대학교 해양생명공학과) ;
  • 박경수 (안양대학교 해양생명공학과)
  • Received : 2010.07.29
  • Accepted : 2010.12.29
  • Published : 2011.02.28

Abstract

Acute toxicity test and behavioral change analysis of seawater acclimated Japanese medaka were conducted to identify the brine effects on fish by seawater desalination. 7 day acute toxicity test of brine revealed linear concentration-response relationship from 40.0~80.0 psu treatment groups. There was no significant brine effect for 30-40 psu groups and mass mortality was observed from >50 psu exposure (7-day $LC_{50}$=51.4 psu). Images from the real time camera system were analyzed to observe the changes in behavioral patterns of medaka exposed to various salinity. 40.0 and 50.0 psu exposed groups were stabilized in behavioral patterns after 3.1 and 4.6 hours, respectively and 60.0 psu group showed sharp increase in activity during first 12 hours and 50% mortality thereafter. Similar patterns were observed to 70 and 80 psu groups and both experimental groups showed 100% mortality within 12 hours. Acute toxicity test and behavioral patterns showed very similar toxicity results which revealed the increases in mortality and behavioral activities from 50.0 psu. This critical salinity for fish impacts must be implemented to brine discharge strategy by seawater desalination into the coastal area. Also, we recommend that real time camera monitoring system must be a useful tool for early warning of fish toxicity for other applications. This research was funded by Ministry of Land, Transport and Maritime Affairs, Korea.

본 연구는 해수담수화 부산물인 고염해수에 대한 어류의 단기적인 영향을 평가하기 위하여 해양생태독성평가용 표준시험종인 송사리(Oryzias latipes)를 이용하여 급성독성평가 및 행동패턴의 변화를 관찰하였다. 30.0 psu 해수에 순치된 송사리를 7일 동안 고염수에 노출하여 급성독성평가를 수행한 결과, 40.0~80.0 psu에 노출된 송사리의 사망률은 농도-반응의 선형관계가 뚜렷하였다. 반면 40.0 psu 이하의 염분에서는 송사리의 독성반응이 관찰되지 않았으나 50.0 psu 보다 높은 농도에서는 뚜렷한 독성 반응이 나타났다(7-day $LC_{50}$=514 psu). 송사리의 행동 변화 분석은 카메라를 통해 투시된 실시간 배정 영상을 추출하여 현재의 프레임과 차영상을 추출하는 기법을 이용하였다. 고염수 노출에 따른 송사리의 행동변화를 분석한 결과, 40.0 psu와 50.0 psu에 노출되고, 각각 3.1시간과 4.6시간 동안 초기 염분 스트레스를 받은 후에는 안정된 활동패턴을 보였다. 그러나 60.0 psu 보다 높은 농도에 노출된 송사리의 활동량은 염분노출 초기에 급격히 증가하였으며, 50% 가량 사망하였다. 70.0 psu 보다 높은 농도에서 실험생물의 활동량은 노출 후 급격히 증가하였으며, 행동패턴은 심각하게 교란되었고, 12시간 이내에 모든 개체가 사망하였다. 본 연구 결과, 고염해수에 대한 급성독성평가와 행동변화 모니터링 결과는 유의한 연관성이 나타났으며, 따라서 해수담수화에 따른 고염해수의 해양배출은 확산후 최종농도가 50.0 psu 이하로 배출될 수 있도록 조절하여야한다. 또한 카메라 관찰을 통한 영상 분석 기법은 시험생물의 행동변화에 따른 영향을 실시간으로 모니터링할 수 있으므로 조기 경보시스템으로 활용 가지가 높은 것으로 판단된다.

Keywords

References

  1. 김동수, 주찬순, 2001. 여수 연안 승망 어장의 환경요인과 어획변동에 관한 연구(I). 수온.염분과 어획량과의 관계. 한국양식기술학회지, 37(2): 71-77.
  2. 김철기, 김광배, 차의영, 2003. 다층 퍼셉트론을 이용한 유해물질 유입에 따른 송사리의 행동 반응 분석 및 인식. 멀티미디어학회지, 6: 1062-1069.
  3. 박경수, 강주찬, 윤성진, 이승민, 황윤기, 2008. 어류 자어의 사망률을 이용한 해양생태독성시험 방법에 관한 연구. 바다, 13(2):140-146.
  4. 박경수, 윤성진, 이승민, 김애향, 박승윤, 강덕영, 2005. 해양생태 독성평가를 위한 표준시험생물로서의 송사리(Oryzias latipes)에 관한 연구. 환경생물학회지, 23: 293-303.
  5. 박배경, 박석순, 캐런 어스트필드, 키이스 쿠우퍼, 1996. 송사리알의 초기 발생과정을 이용한 매립지 침술수 독성도 평가. 환경생물학회지, 14: 55-61.
  6. 신윤경, 최낙중, 허영백, 한형균, 박정흠, 김윤, 2007. 염분변화에 따른 멍게 Halocynthia roreti의 생존과 생리적 반응. 한국양식학회지, 20(4): 226-231.
  7. 양현성, 박경일, 홍충희, 최광식, 염분 스트레스가 둥근전복 Haliotis discus discus의 유리아미노산 조성에 미치는 영향. 한국양식학회지, 21(4): 218-225.
  8. 임병진, 박수영, 변명섭, 이철우, 임은숙, 윤승모, 1996. 수질오염 조기감시를 위한 물벼룩독성경보장치 활용. 한국육수학회지, 29(2): 421-427.
  9. 윤성진, 박경수, 오정환, 박승윤, 2006. 저서성 해산 요각류 harpacticoid Tigriopus japonicus 유생을 이용한 해양생태독성 평가. 한국해양환경공학회지, 9(3): 160-167.
  10. 윤성진, 염동혁, 김우근, 윤홍길, 이성규, 2007. 초음파가 잉어 Cyprinus carpio의 성장 및 단기적 행동에 미치는 영향. 한국육수학회지, 40(2): 244-253.
  11. 윤성진, 이성규, 박한오, 2008. 국내산 물벼룩 Daphina sp.를 이용한 연속적인 수질모니터링 장치 개발. 한국물환경학회지, 24(1): 36-43.
  12. 윤호섭, 서대철, 최상덕, 2006. 서해안 민어, Miichthys miiuy의 산란 특성과 부화에 미치는 염분의 영향. 한국환경생물학회지, 24(1): 53-59.
  13. 추효상, 2002. 하계 남해의 해황 변동과 멸치 초기 생활기 분포 특성. 한국수산학회지, 35(1): 77-85.
  14. 최충길, 황영진, 위인선, 1992. 송사리 수정난에 미치는 중금속의 영향. 한국물환경학회지, 8: 135-140.
  15. 황형규, 김대현, 박민우, 윤성종, 이윤호, 2008. 고등어 Scomber japonicus 난발생 및 자어에 미치는 수온, 염분의 영향. 한국양식학회지, 21(4): 234-238.
  16. 환경부, 2004. 위해성평가.관리요소기술-수체에서 유해물질관리를 위한 Aqualarm 개발. 160 pp.
  17. 허준욱, 이정열, 김용호, 박인석, 장영진, 2006. 양식 넙치, Paralchthys olivaceus의 혈액학적 변화 및 생존율에 미치는 염분의 영향. 한국환경생물학회지, 24(4): 380-386.
  18. Ahmed, M., W.H. Shayya, D. Hoey, A. Mahendran, R. Morris and J. Al-Handaly, 2000. Use of evaporation ponds for brine disposal in desalination plants. Desalination, 130: 155-168. https://doi.org/10.1016/S0011-9164(00)00083-7
  19. Astrup, J., 1999. Ultrasound detection in fish-a parallel to the sonarmediated detection of bats by ultrasound-sensitive insects?. Comp. Biochem. Physiol., 124A: 19-27.
  20. Bhattacharyya, S., P.L. Klerks and J.A. Nyman, 2003. Toxicity to freshwater organisms from oil and oi spill chemical treatments in laboratory microcosms. Environ. Poll., 122: 205-215. https://doi.org/10.1016/S0269-7491(02)00294-4
  21. Blaise, C., F. Gagne, M. Salaza, S. Salazar, S. Trottier and P.-D. Hansen, 2003. Experimentally-induced feminisation of freshwater mussels after long-term exposure to a municipal effluent. Fresenius Environmental Bulletin, 12(8): 865-870.
  22. Bremere, I., M. Kennedy, A. Stikker and J. Schippers, 2001. How water scarcity will effect the growth in the desalination market in the coming 25 years. Desalination, 138: 7-15. https://doi.org/10.1016/S0011-9164(01)00239-9
  23. Charoy, C.P., C.R. Janssen, G. Persoone and P. Clément, 1995. The swimming behaviour of Branchionus calyciflorus (rotifer) under toxic stress. I. The use of automated trajectometry for determining sublethal effects of chemicals. Aquat. Toxicol., 32: 271-282. https://doi.org/10.1016/0166-445X(94)00098-B
  24. Chen, C.M. and K.R. Cooper, 1999. Developmental toxicity and EROD induction in the Japanese medaka (Oryzias latipes) treated with dioxin congeners. Bull. Environ. Contam. Toxicol., 63: 423- 429. https://doi.org/10.1007/s001289900997
  25. Chen, C.M., S.C. Yu and M.C. Liu, 2001. Use of Japanese medaka (Oryzias latipes) and tilapia (Oreochromis mossambicus) in toxicity tests on different industrial effluents in Taiwan. Arch. Environ. Contam. Toxicol., 40: 363-370. https://doi.org/10.1007/s002440010184
  26. Codina, J.C., A. Pérez-García, P. Romero and A. De Vicente, 1993. A Comparison of microbial bioassays for the detection of metal toxicity. Arch. Environ. Contam. Toxicol., 25: 250-254. https://doi.org/10.1007/BF00212137
  27. Darwish, M.A., 2001. On electric power and desalted water production in Kuwait. Desalination, 138: 183-190. https://doi.org/10.1016/S0011-9164(01)00263-6
  28. Fernandez-Casalderrey, A., M.D. Ferrando and E. Andreumoliner, 1994. Effect of sublethal concentrations of pesticides on the feeding behavior of Daphnia magna. Ecotoxicology and Environmental Safety, 27(1): 82-89. https://doi.org/10.1006/eesa.1994.1008
  29. Fernandez-Torquemada, Y., J.L. Sánchez-Lizaso and J.M. Gonzalez- Correa, 2005. Preliminary results of the monitoring of the brine discharge produced by the SWRO desalination plant of Alicante (SE Spain). Desalination, 182: 395-402. https://doi.org/10.1016/j.desal.2005.03.023
  30. Follum, O.A. and J.S. Gray, 1987. Nitrogenous excretion by the sediment- living bivalve Nucula tenuis from the Oslofjord, Norway. Mar. Biol., 96: 355-358. https://doi.org/10.1007/BF00412517
  31. Forget, J., Pavillon, J.F., Menasria, M.R. and Bocquene, G. 1998. Mortality and LC50 values for several stages of the marine copepod Tigriopus brevicornis (Müller) exposed to the metals arsenic and cadmium and the pesticides atrazine, carbofuran, dichlorvos, and malathion. Ecotoxicology and Environmental Safety 40: 239-244. https://doi.org/10.1006/eesa.1998.1686
  32. Gerhardt, A., L.J. De Bisthoven, S. Mo, C. Wang, M. Yang, and Z. Wang, 2002. Short-term response of Oryzias latipes (Pisces: Adrianichthyidae) and Macrobrachium nipponense (Crustacea: Palaemonidae) to municipal and pharmaceutical waste water in Beijing, China: survival, behaviour, biochemical biomakers. Chemosphere, 47: 35-47. https://doi.org/10.1016/S0045-6535(01)00223-5
  33. Haruta, K., T. Yamashita and S. Kawashima, 1991. Changes in arginine vasotocin content in the pituitary of the medaka (Oryzias latipes) during osmotic stress. Gen. Comp. Endocrinol., 83: 327- 336. https://doi.org/10.1016/0016-6480(91)90137-U
  34. Hoepner, T., 1999. A procedure for environmental impact assessments (EIA) for seawater desalination plants. Desalination, 124: 1-12. https://doi.org/10.1016/S0011-9164(99)00083-1
  35. Hopner, T. and J. Windelberg, 1996. Elements of environmental impact studies on coastal desalination plants. Desalination, 108: 11-18.
  36. Humphries, J.R. and M.S. Wood, 2004. Reverse osmosis environmental remediation. Development and demonstration pilot project. Desalination, 168: 177-184. https://doi.org/10.1016/j.desal.2004.06.184
  37. Hurst, T.P., B.H. Key, P.A. Ryan and M.D. Brown, 2007. Sublethal effects of mosquito lavicides on swimming performance of larviorous fish Melanotaenia duboulayi (Atheriniformes: Melanotaeniidae). J. Econo. Ento., 100(1): 61-65. https://doi.org/10.1603/0022-0493(2007)100[61:SEOMLO]2.0.CO;2
  38. Jobling, M., 1981. the influence of feeding on the metabolic rate of fishes: a short review. J. Fish Biol., 18: 385-400. https://doi.org/10.1111/j.1095-8649.1981.tb03780.x
  39. Kim, W.S., J.M. Kim, S.K. Yi and H.T. Huh, 1997. Endogenous circadian rhythm in the river puffer fish Takifugu obscurus. Mar. Ecol. Prog. Ser., 153: 293-298. https://doi.org/10.3354/meps153293
  40. Kim, W.S., J.M. Kim, M.S. Kim, C.W. Park and H.T. Huh, 1998. Effects of sudden changes in salinity on endogenous rhythms of the spotted sea bass Lateolabrax sp.. Mar. Biol., 131: 219-225. https://doi.org/10.1007/s002270050314
  41. Kim, W.S., H.T. Huh, J.H. Lee, H. Rumohr and C.H. Koh, 1999. Endogenous circatidal rhytym in the Manila clam Ruditapes philippinarum (Bibalvia: Veneridae). Mar. Biol., 134: 107-112. https://doi.org/10.1007/s002270050529
  42. Kim, W.S., H.T. Huh, S.H. Huh and T.W. Lee, 2001. Effects of salinity on endogenous rhythm of the Manila clam, Ruditapes philippinarum (Bivalvia: Veneridae). Mar. Biol., 138: 157-162. https://doi.org/10.1007/s002270000430
  43. Kim, W.S., S.J. Yoon, J.W. Kim, J.A. Lee and T.W. Lee, 2006. Metabolic response under different salinity and temperature conditions for glass eel Anguilla japonica. Mar. Biol., 149: 1209-1215. https://doi.org/10.1007/s00227-006-0293-5
  44. Kwak, I.S., T.S. Chon, H.M. Kang, N. Chung, J.S Kim, S.C. Koh, S.K. Lee and Y.S. Kim, 2002. Pattern recognition of the movement tracks of medaka (Oryzias latipes) in respons to sub-lethal treatments of an insecticide by using artificial neural networks. Environ. Pollut., 120: 671-681.
  45. Mahi, P., 2001. Development environmentally acceptable desalination projects. Desalination, 138: 167-172. https://doi.org/10.1016/S0011-9164(01)00260-0
  46. Miri, R. and A. Chouikhi, 2005. Ecotoxicological marine impacts from seawater desalination plants. Desalination, 182: 403-410. https://doi.org/10.1016/j.desal.2005.02.034
  47. NIWA, 1998. Marine fish (Rombosolea plebeia). Acute toxicity test protocol. National Institute of Water and Atmospheric Research, pp. 29.
  48. Oren, A., I. Gavrieli, J. Gavrieli, M. Kohen, L. Lati and M. Aharoni, 2004. Biological effects of dilution of Dead Sea brine with seawater: Implications for the planning of the Red Sea-Dead Sea "Peace Conduit", J Mar. Syst., 46: 121-131. https://doi.org/10.1016/j.jmarsys.2003.11.017
  49. OECD, 1992. Guideline for the testing of chemicals: Fish, acute toxicity test. Organisation for Economic Cooperation and Development, No. 203.
  50. Reubush, K.J. and A.G. Heath, 1996. Metabolic responses to acute handling by fingerling inland and anadromous striped bass. J. Fish Biol., 49: 830-841. https://doi.org/10.1111/j.1095-8649.1996.tb00082.x
  51. Sakamoto, T., T. Kozaka, A. Takahashi, H. Kawauchi and M. Ando, 2001. Medaka (Oryzias latipes) as a model for hypoosmoregulation of euryhaline fishes. Aquaculture, 193: 347-354. https://doi.org/10.1016/S0044-8486(00)00471-3
  52. Sagloi, P., K.H. Olsen and S. Bretaud, 2001. Behavioral and olfactory responses to prochloraz, bentazone, and nicosulfuron-contaminated flows in goldfish. Arch. Environ. Contam. Toxicol., 41: 192-200. https://doi.org/10.1007/s002440010237
  53. Szulkin, M., P. Dawidowicz and S.I. Dodson, 2006. Behavioural uniformity as a response to cues of predation risk. Ani. Bebav., 71: 1013-1019.
  54. Talavera, J.L.P. and J.J.Q. Ruiz, 2001. Identification of the mixing processes in brine discharges carried out in Barranco del Toro Beach, south of Gran Canaria (Canary Islands). Desalination, 139: 277-286. https://doi.org/10.1016/S0011-9164(01)00320-4
  55. Tsiourtis, N.X., 2001. Desalination and environment. Desalination, 138: 1 https://doi.org/10.1016/S0011-9164(01)00237-5
  56. USEPA, 2002. Methods for measuring the acute toxicity of effluents and receiving water to freshwater and marine organisms. United States Environment Protection Agency, pp. 122.
  57. Vijayavel, K., R.D. Gomathi, K. Durgabhavani and M.P. Balasubramanian, 2004. Sublethal effect of naphthalene on lipid peroxidation and antioxidant status in the edible marine crab Scylla serrata. Mar. Poll. Bull., 48: 429-433. https://doi.org/10.1016/j.marpolbul.2003.08.017
  58. Waring, C.P., R.M. Stagg and M.G. Poxton, 1996. Physiological responses to handling in the turbot. J. Fish Biol., 48: 161-173. https://doi.org/10.1111/j.1095-8649.1996.tb01110.x
  59. Widdows, J. and A.J.S. Hawkins, 1989. Partitioning of rate of heat dissipation by Mytilus edulis into maintenance, feeding and growth components. Physiol. Zool., 62: 764-784.
  60. Yasumasu, S. and S. Mori, 1975. Studies on the variation and adaptation of fishes. I. Adaptation of killfish (Oryzias latipes T&S) to saline water. 1. Field study. Zool. Mag., 66: 351-358.
  61. Yoon, S.J., C.K. Kim, J.G. Myoung and W.S. Kim, 2003. Comparison of oxygen consumption patterns between wild and cultured black rockfish Sebastes schlegeli. Fish. Sci., 69: 43-49. https://doi.org/10.1046/j.1444-2906.2003.00586.x

Cited by

  1. 저온 충격에 노출된 참돔 Pagrus major 치어의 임계 저 수온 및 행동 내성 반응 vol.22, pp.1, 2011, https://doi.org/10.5762/kais.2021.22.1.575