• Title/Summary/Keyword: monitoring buoy

Search Result 63, Processing Time 0.021 seconds

Development of a Wave Monitoring System Using a Marine Radar (항해용 레이더를 이용한 파랑 모니터링 시스템 개발)

  • PARK JUN-SOO;PARK SEUNG-GEUN;KWON SUN-HONG;PARK GUN-IL;CHOI JAE-WOONG;KANG YUN-TAE;HA MUN-KEUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.1 s.68
    • /
    • pp.37-42
    • /
    • 2006
  • In the ocean engineering field, information about the ocean environment is important for planning, design, and operation, especially the wave information. High precision wave data is also important for considering environmental problems, like efficient operation of ships. For this purpose, many methods were considered in the past. However, an on-board directing wave measurement system has not been incorporated. The use of conventional marine radar Plane Position Indicator (PPI) images allows the estimation of wave information on a real-time basis, using both space and time information, regarding the evolution of ocean surface waves. In order to achieve data acquisition, the Radar Scan Converter (RSC) has been developed. Three-dimensional analysis was performed. The comparison of wave information derived from this system, and that of wave buoy, shows that this wave field detecting system can be a useful tool.

Development of Wave Monitoring System using Precise Point Positioning (PPP 기반 항법 알고리즘을 이용한 파고 계측시스템 설계 및 구현)

  • Song, Se Phil;Cho, Deuk Jae;Park, Sul Gee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.5
    • /
    • pp.1055-1062
    • /
    • 2015
  • A GPS based wave height meter system is proposed in this paper. The proposed system uses a dual-frequency measurements, a precise GPS satellite information and a PPP-based navigation algorithm to estimate the position with high accuracy. This method does not need to receive corrections from the reference stations. Therefore, unlike RTK based wave meter, regardless of the distance to the reference stations, it is possible to estimate position with high accuracy. This system is very simple and accurate system, but accelerometer-based system requires the other sensors such as GPS. Because position error is accumulated in the accelerometer system and must be removed periodically for high accuracy. In order to get the measurements and test the proposed wave height meter system, a buoy equipped with the test platform is installed on the sea near by Jukbyeon habor in Uljin, Korea. Then, to evaluate the performance, compares built-in commercial wave height meter with proposed system.

Performance Comparison of Wave Information Retrieval Algorithms Based on 3D Image Analysis Using VTS Sensor (VTS 센서를 이용한 3D영상 분석에 기초한 파랑 정보 추출 알고리즘 성능 비교)

  • Ryu, Joong-seon;Lim, Dong-hee;Kim, Jin-soo;Lee, Byung-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.3
    • /
    • pp.519-526
    • /
    • 2016
  • As marine accidents happen frequently, it is required to establish a marine traffic monitoring system, which is designed to improve the safety and efficiency of navigation in VTS (Vessel Traffic Service). For this aim, recently, X-band marine radar is used for extracting the sea surface information and, it is necessary to retrieve wave information correctly and provide for the safe and efficient movement of vessel traffic within the VTS area. In this paper, three different current estimation algorithms including the classical least-squares (LS) fitting, a modified iterative least-square fitting routine and a normalized scalar product of variable current velocities are compared with buoy data and then, the iterative least-square method is modified to estimate wave information by improving the initial current velocity. Through several simulations with radar signals, it is shown that the proposed method is effective in retrieving the wave information compared to the conventional methods.

SEASONAL VARIATION OF THE OCEANIC WATER INTRUSIONS INTO KAGOSHIMA BAY DERIVED FROM THE SATELLITE SST AND CHL-A IMAGES

  • Hosotani, Kazunori
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.61-64
    • /
    • 2008
  • Seasonal distribution of the oceanic water intrusion was investigated using satellite SST (sea surface temperature) and chl-a (chlorophyll-a) images taken by the MODIS Aqua sensor. The warm water mass emanating periodically from the meandering Kuroshio Current brings the oceanic water intrusion, known as the 'Kyucho' phenomenon, into Kagoshima bay during the winter. Satellite SST images and buoy robot data show that this warm water intrusion has the characteristics of a semigeostrophic gravity current influenced by the Coriolis effect. However, it is difficult to find the oceanic water intrusion during the summer season considering that it is accompanied by thermal stratification, and SST shows almost the same temperature between the inner side of the bay and the ocean. In this research, the satellite chl-a images taken by MODIS Aqua were employed instead of SST images to reveal the oceanic water intrusion in each season. The enclosed bay has the tendency to undergo eutrophication caused by organic materials from land and differences in chl-a concentration of the bay water and the oceanic water. As a result, distribution of low concentration chl-a with oceanic water intrusion in summer season shows almost the same pattern in winter season. On the other hand, in spring season, both SST and chl-a images are available to differentiate the oceanic water intrusion. Therefore, applying the suitable satellite sensor images for each season is effective in the monitoring of oceanic water intrusion. Moreover, in this area, SST and chl-a distribution reveal not only the oceanic water intrusion into Kagoshima bay but also the intrusion at Fukiage seashore facing East China Sea.

  • PDF

A Development of Marine Observation Buoy Monitoring System Using Trail Camera and AtoN AIS (트레일 카메라 및 AIS를 이용한 해양관측부이용 감시시스템의 개발)

  • Gang, Yong-Soo;Wong, Chii-Lok;Hwang, Hun-Gyu;Kang, Seok-Sun;Kim, Hyen-Woo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2018.05a
    • /
    • pp.306-307
    • /
    • 2018
  • 본 논문에서는 해양관측부이 보호 및 해상 관측 등을 위해 사용되고 있는 국내외 영상감시 시스템 및 기술 현황을 살펴보고, 차세대 해상용 통신 네트워크 및 인공위성을 통한 해양 공공시설의 안전감시 시스템이 가져야 할 요구사항과 이에 대한 국내외 기술개발 현황을 살펴본다. 또한, 선박 인식 및 추적, 나아가 충돌 예측 등을 수행하여, 해상사고를 예방할 수 있는 해양관측부이용 감시시스템의 개발에 관한 내용을 다룬다. 이를 위해 개발하는 시스템은 해양관측부이에 장착되어 저전력으로 동작하며, 해수에 강한 트레일 감시카메라를 개발하여 적용한다. 추가적으로 AIS정보를 활용한 충돌 예방 경고 모듈이 탑재되고, LTE-M 등과 같은 차세대 해상이동통신 및 위성망 M2M 네트워크를 응용한 통신 모듈을 기반으로 육상 알람 기능을 제공한다. 이를 통해 시스템의 신뢰성을 확보하고, 대형 선박과의 해상사고(선박추돌사고 및 기름유출 등)와 소형선박에 의한 시설물 훼손(Vandalism)의 발생 가능성을 인지할 수 있는 종합적인 데이터를 수집하여 사고의 예방 및 재난 상황 등을 예측함으로써 중요시설의 안전 및 해양환경 보호에 기여하고자 한다.

  • PDF

An Analysis of the Impact of Building Wind by Field Observation in Haeundae LCT Area, South Korea: Typhoon Omais in 2021

  • Byeonggug Kang;Jongyeong Kim;Yongju Kwon;Joowon Choi;Youngsu Jang;Soonchul Kwon
    • Journal of Ocean Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.380-389
    • /
    • 2022
  • In the Haeundae area of Busan, South Korea, damage has continued to occur recently from building wind from caused by dense skyscrapers. Five wind observation stations were installed near LCT residential towers in Haeundae to analyze the effect of building winds during typhoon Omais. The impact of building wind was analyzed through relative and absolute evaluations. At an intersection located southeast of LCT (L-2), the strongest wind speed was measured during the monitoring. The maximum average wind speed for one minute was observed to be 38.93 m/s, which is about three times stronger than at an ocean observation buoy (12.7 m/s) at the same time. It is expected that 3 to 4 times stronger wind can be induced under certain conditions compared to the surrounding areas due to the building wind effect. In a Beaufort wind scale analysis, the wind speed at an ocean observatory was mostly distributed at Beaufort number 4, and the maximum was 8. At L-2, more than 50% of the wind speed exceeded Beaufort number 4, and numbers up to 12 were observed. However, since actual measurement has a limitation in analyzing the entire range, cross-validation with computational fluid dynamics simulation data is required to understand the characteristics of building winds.

A Study on Continuous long-term Wave Observation using Remote Monitoring System (원격모니터링을 이용한 연속파랑관측에 관한 연구)

  • Shin, Bumshick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.654-659
    • /
    • 2018
  • In this study, continuous long-term observation is implemented with an ocean radar. Ocean radar conducts remote observation (combined) with ground-based radars, which enable a series of simultaneous observations of an extensive range of the coast with high frequency. An ocean radar for continuous long-term observation is operated at Samcheok on the east coast of Korea. Samcheok experienced tsunami damage in recent years and is the location of a nuclear power plant. In order to examine the reliability of the ocean radar, a pressure-type wave gauge, ultrasonic wave gauge, and ocean buoy are installed for the purpose of data comparison and verification. The ocean radar used in this study is an array-type HF-RADAR named WERA (WavE RAdar). The analysis of the data obtained from continuous long-term observations showed that the radar observations were in agreement with more than 90% of the wave data collected within a 25 km range from the center of two sites. Less than 1% of the entire observation data was unmeasured by the time series analysis. As a result of comparing the radar data with the direct observations made by the wave gauge, it was inferred that the RMS deviation is less than 20cm and the correlation coefficient was in the range of 0.84 ~ 0.87. Moreover, supported by such observations, a comprehensive monitoring system is being developed to provide the public with real-time reports on waves and currents via the internet.

Design of Marine IoT Wireless Network for Building Fishing Gear Monitoring System (어구 모니터링 시스템 구축을 위한 해상 IoT 무선망 설계)

  • Kwak, Jae-Min;Kim, Se-Hoon;Lee, Seong-Real
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.2
    • /
    • pp.76-83
    • /
    • 2018
  • In order to prevent overusing the fishing gear and to reduce discarded fishing gear, there is a need for a technique that can efficiently transmit the information including the type and location of the fishing gear and the user's real name to the fishing boat and the control center using IoT-based communication. In order to do this, it is necessary to be able to confirm the position information of a plurality of buoys that can be identified by the base stations on the land. In this paper, in order to service the maritime IoT communication system, we calculate the link budget between the land base station and the targets on the sea to derive the service coverage. To design a marine IoT radio network for building a fishing gear monitoring system, we calculate link budget for wireless service optimization at sea for NB-IoT using 1.8 GHz frequency band and LoRa service using 900 MHz frequency band. In addition, the link budget between the land base station and buoy, the link budget between the land base station and fishing boat are calculated and the results are analyzed.

Development of a Prototype System for Aquaculture Facility Auto Detection Using KOMPSAT-3 Satellite Imagery (KOMPSAT-3 위성영상 기반 양식시설물 자동 검출 프로토타입 시스템 개발)

  • KIM, Do-Ryeong;KIM, Hyeong-Hun;KIM, Woo-Hyeon;RYU, Dong-Ha;GANG, Su-Myung;CHOUNG, Yun-Jae
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.63-75
    • /
    • 2016
  • Aquaculture has historically delivered marine products because the country is surrounded by ocean on three sides. Surveys on production have been conducted recently to systematically manage aquaculture facilities. Based on survey results, pricing controls on marine products has been implemented to stabilize local fishery resources and to ensure minimum income for fishermen. Such surveys on aquaculture facilities depend on manual digitization of aerial photographs each year. These surveys that incorporate manual digitization using high-resolution aerial photographs can accurately evaluate aquaculture with the knowledge of experts, who are aware of each aquaculture facility's characteristics and deployment of those facilities. However, using aerial photographs has monetary and time limitations for monitoring aquaculture resources with different life cycles, and also requires a number of experts. Therefore, in this study, we investigated an automatic prototype system for detecting boundary information and monitoring aquaculture facilities based on satellite images. KOMPSAT-3 (13 Scene), a local high-resolution satellite provided the satellite imagery collected between October and April, a time period in which many aquaculture facilities were operating. The ANN classification method was used for automatic detecting such as cage, longline and buoy type. Furthermore, shape files were generated using a digitizing image processing method that incorporates polygon generation techniques. In this study, our newly developed prototype method detected aquaculture facilities at a rate of 93%. The suggested method overcomes the limits of existing monitoring method using aerial photographs, but also assists experts in detecting aquaculture facilities. Aquaculture facility detection systems must be developed in the future through application of image processing techniques and classification of aquaculture facilities. Such systems will assist in related decision-making through aquaculture facility monitoring.

Monitoring of the Sea Surface Temperature in the Saemangeum Sea Area Using the Thermal Infrared Satellite Data (열적외선 위성자료를 이용한 새만금 해역 해수표면온도 모니터렁)

  • Yoon, Suk;Ryu, Joo-Hyung;Min, Jee-Eun;Ahn, Yu-Hwan;Lee, Seok;Won, Joong-Sun
    • Korean Journal of Remote Sensing
    • /
    • v.25 no.4
    • /
    • pp.339-357
    • /
    • 2009
  • The Saemangeum Reclamation Project was launched as a national project in 1991 to reclaim a large coastal area of 401 km$^2$ by constructing a 33-km long dyke. The final dyke enclosure in April 2006 has transformed the tidal flat into lake and land. The dyke construction has abruptly changed not only the estuarine tidal system inside the dyke, but also the coastal marine environment outside the dyke. In this study, we investigated the spatial change of SST distribution using the Landsat-5/7 and NOAA data before and after the dyke completion in the Saemangeum area. Satellite-induced SST was verified by compared with the various in situ measurements such as tower, buoy, and water sample. The correlation coefficient resulted in above 0.96 and RMSE was about 1$^{\circ}C$ in all data. 38 Landsat satellite images from 1985 to 2007 were analyzed to estimate the temporal and spatial change of SST distribution from the beginning to the completion of the Samangeum dyke's construction. The seasonal change in detailed spatial distribution of SST was measured, however, the estimation of change during the Saemangeum dyke's construction was hard to figure out owing to the various environmental conditions. Monthly averaged SST induced from NOAA data from 1998 to 2007 has been analyzed for a complement of Landsat's temporal resolution. At the inside of the dyke, the change of SST from summer to winter was large due to the relatively high temperature in summer. In this study, multi-sensor thermal remote sensing is an efficient tool for monitoring the temporal and spatial distribution of SST in coastal area.