• Title/Summary/Keyword: moment-resisting frames

Search Result 298, Processing Time 0.022 seconds

Shaking Table Tests of 1/12-Sale R.C. Bearing-Wall system with Bottom Piloti Frames (1/12 축소 철근콘크리트 상부벽식-하부골조 건축물의 진동대 실험)

  • 이한선;고동우;권기현;김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.407-414
    • /
    • 2001
  • The severe shortage of the available sites in the highly developed downtown area in Korea necessitates the construction of high-rise buildings which meet the need of residence and commercial activity simultaneously. The objective of this study is to investigate the seismic performance of this type of building structures. For this purpose, two 1 :12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames have two different layouts of the plan The one is a moment-resisting frame system and the other is a moment-resisting frame system with a infilled shear wall. Then, this model was subjected to a series of earthquake excitations. The test results show that the existence of shear wall reduced the shear deformation at the piloti frame, but has almost the negligible effect on the reduction of the overturning-moment angle.

  • PDF

Influence of vertical load on in-plane behavior of masonry infilled steel frames

  • Emami, Sayed Mohammad Motovali;Mohammadi, Majid
    • Earthquakes and Structures
    • /
    • v.11 no.4
    • /
    • pp.609-627
    • /
    • 2016
  • Results of an experimental program are presented in this paper for the influence of vertical load on the in-plane behavior of masonry infilled steel frames. Five half-scaled single-story, single-bay steel frame specimens were tested under cyclic lateral loading. The specimens included four infilled frames and one bare frame. Two similar specimens as well as the bare frame had moment-resisting steel frames, while the remaining two specimens had pinned steel frames. For each frame type, one specimen was tested under simultaneous vertical and lateral loading, whereas the other was subjected only to lateral loading. The experimental results show that the vertical load changes the cracking patterns and failure modes of the infill panels. It improves dissipated hysteresis energy and equivalent viscous damping. Global responses of specimens, including stiffness and maximum strength, do no change by vertical loading considerably. Regarding the ductility, the presence of vertical load is ignorable in the specimen with moment-resisting frame. However, it increases the ductility of the infilled pinned frame specimen, leading to an enhancement in the m-factor by at least 2.5 times. In summary, it is concluded that the influence of the vertical load on the lateral response of infilled frames can be conservatively ignored.

Seismic behavior of frames with innovative energy dissipation systems (FUSEIS 1-1)

  • Dougka, Georgia;Dimakogianni, Danai;Vayas, Ioannis
    • Earthquakes and Structures
    • /
    • v.6 no.5
    • /
    • pp.561-580
    • /
    • 2014
  • After strong earthquakes conventional frames used worldwide in multi - story steel buildings (e.g. moment resisting frames) are not well positioned according to reparability. Two innovative systems for seismic resistant steel frames incorporated with dissipative fuses were developed within the European Research Program "FUSEIS" (Vayas et al. 2013). The first, FUSEIS1, resembles a vertical Vierendeel beam and is composed of two closely spaced strong columns rigidly connected to multiple beams. In the second system, FUSEIS2, a discontinuity is introduced in the composite beams of a moment resisting frame and the dissipative devices are steel plates connecting the two parts. The FUSEIS system is able to dissipate energy by means of inelastic deformations in the fuses and combines ductility and architectural transparency with stiffness. In case of strong earthquakes damage concentrates only in the fuses which behave as self-centering systems able to return the structure to its initial undeformed shape. Repair work after such an event is limited only to replacing the fuses. Experimental and numerical investigations were performed to study the response of the fuses system. Code relevant design rules for the seismic design of frames with dissipative FUSEIS and practical recommendations on the selection of the appropriate fuses as a function of the most important parameters and member verifications have been formulated and are included in a Design Guide. This article presents the design and performance of building frames with FUSEIS 1-1 based on models calibrated on the experimental results.

Development of Optimal Seismic Design Model for Inverted V-type Special Concentrically Braced Frames (역V형 특수중심가새골조의 최적내진설계 모델 개발)

  • Choi, Se-Woon;Yang, Hee-Jin;Park, Hyo-Seon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.1
    • /
    • pp.111-119
    • /
    • 2010
  • Many researchers have studied on the optimal seismic design with the development of the computer. So far the application structure of most researches on the optimal seismic design was almost the moment resisting frame. Because the braced frames are the representative lateral load resisting system with the moment resisting frames, it is estimated that the effect on the practice will be great if it can is provided a design guideline through the development of optimal seismic design model for the braced frames. The purpose of this study is to propose the optimal seismic design model for the inverted V-type special concentrically braced frames considering the buckling of braces. The objective functions of this are to minimize the structural weight and maximize the total dissipated energy of the structure and the constraints of this are the strength conditions for the column, beam, brace and inter-story drifts condition. To verify the proposed model, it is applied to 2D steel concentrically braced frames of 3-story and 9-story.

Seismic Performance of High-Rise Intermediate Steel Moment Frames according to Rotation Capacities of Moment Connections

  • Han, Sang Whan;Moon, Ki-Hoon;Ha, Sung Jin
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.45-55
    • /
    • 2015
  • The rotation capacity of the moment connections could significantly influence on the seismic performance of steel moment resisting frames. Current seismic provisions require that beam-to-column connections in Intermediate Moment Frames (IMF) should have a drift capacity as large as 0.02 radian. The objective of this study was to evaluate the effect of the rotation capacity of moment connections on the seismic performance of high-rise IMFs. For this purpose, thirty- and forty-story high-rise IMFs were designed according to the current seismic design provisions. The seismic performance of designed model frames was evaluated according to FEMA P695. This study showed that the forty-story IMF satisfied the seismic performance objective specified in FEMA P695 when the rotation capacity of the connections was larger than 0.02. However, thirty-story IMFs satisfied the performance objective when the connection rotation capacity is larger than 0.03.

Evaluation of Nonlinear Response for Moment Resisting Reinforced Concrete Frames Based on Equivalent SDOF System (등가 1 자유도계에 의한 철근콘크리트 모멘트 골조구조의 비선형 지진응답 평가법의 검토)

  • 송호산;전대한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • To evaluate the seismic performance of multistory building structures use an equivalent SDOF model to represent the resistance of the structure to deformation as it respond in its predominant mode. This paper presents a method of converting a MDOF system into an equivalent SDOF model. The principal objective of this investigation is to evaluate appropriateness of converting method through perform nonlinear time history analysis of a multistory building structures and an equivalent SDOF model. The hysteresis rules to be used an equivalent SDOF model is obtained from the pushover analysis. Comparing the peak inelastic response of a moment resisting reinforced concrete frames and an equivalent SDOF model, the adequacy and the validity of the converting method is verified. The conclusion of this study is following; A method of converting a MDOF system into an equivalent SDOF model through the nonlinear time history response analysis is valid. The representative lateral displacement of a moment resisting reinforced concrete frames is close to the height of the first modal participation vector \ulcorner$_1{\beta}$${_1{\mu}}=1$. It can be found that the hysteresis rule of an equivalent SDOF model have influence on the time history response. Therefore, it necessary for selecting hysteresis rules to consider hysteresis characteristics of a moment resisting reinforced concrete frames.

Design of MR dampers to prevent progressive collapse of moment frames

  • Kim, Jinkoo;Lee, Seungjun;Min, Kyung-Won
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.291-306
    • /
    • 2014
  • In this paper the progressive collapse resisting capacity of steel moment frames with MR dampers is evaluated, and a preliminary design procedure for the dampers to prevent progressive collapse is suggested. Parametric studies are carried out using a beam-column subassemblage with varying natural period, yield strength, and damper force. Then the progressive collapse potentials of 15-story steel moment frames installed with MR dampers are evaluated by nonlinear dynamic analysis. The analysis results of the model structures showed that the MR dampers are effective in preventing progressive collapse of framed structures subjected to sudden loss of a first story column. The effectiveness is more noticeable in the structure with larger vertical deflection subjected to larger inelastic deformation. The maximum responses of the structure installed with the MR dampers designed to meet a given target dynamic response factor generally coincided well with the target value on the conservative side.

Earthquake behavior of stiffened RC frame structures with/without subsoil

  • Ozdemir, Y.I.;Ayvaz, Y.
    • Structural Engineering and Mechanics
    • /
    • v.28 no.5
    • /
    • pp.571-585
    • /
    • 2008
  • The purpose of this study is to investigate the linear earthquake behavior of the frame structures including subsoil with different stiffening members and to compare the results of each frame considered. These comparisons are made separately for displacement, bending moments and axial forces for frames with different storey and bay numbers for the time history and the modal analyses. The results of both methods are also compared. The results of the frames with subsoil are also compared with the results of the frames without subsoil. It is concluded that all stiffening members considered in this study decrease the lateral displacement of the frame and the bending moment of the columns and increase the axial force in the columns and that configuration of the bracing members come out to be an important parameter in braced frames since the frames with the same type of bracing give different results depending on configuration. It is also concluded that, in general, the absolute maximum displacements of the frames modeled with subsoil are larger than those of the frames modeled without subsoil.

Closed-form fragility analysis of the steel moment resisting frames

  • Kia, M.;Banazadeh, M.
    • Steel and Composite Structures
    • /
    • v.21 no.1
    • /
    • pp.93-107
    • /
    • 2016
  • Seismic fragility analysis is a probabilistic decision-making framework which is widely implemented for evaluating vulnerability of a building under earthquake loading. It requires ingredient named probabilistic model and commonly developed using statistics requiring collecting data in large quantities. Preparation of such a data-base is often costly and time-consuming. Therefore, in this paper, by developing generic seismic drift demand model for regular-multi-story steel moment resisting frames is tried to present a novel application of the probabilistic decision-making analysis to practical purposes. To this end, a demand model which is a linear function of intensity measure in logarithmic space is developed to predict overall maximum inter-story drift. Next, the model is coupled with a set of regression-based equations which are capable of directly estimating unknown statistical characteristics of the model parameters.To explicitly address uncertainties arise from randomness and lack of knowledge, the Bayesian regression inference is employed, when these relations are developed. The developed demand model is then employed in a Seismic Fragility Analysis (SFA) for two designed building. The accuracy of the results is also assessed by comparison with the results directly obtained from Incremental Dynamic analysis.

Inelastic Dynamic Demands of a RC Special Moment Frame Building (철근 콘크리트 특수 모멘트 골조 건물의 비탄성 동적 요구값)

  • Kim, Tae-Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.11-19
    • /
    • 2005
  • Seismic design of a building is usually performed by using the linear static procedure. However, the actual behavior of the building subjected to earthquake is inelastic and dynamic in nature. Therefore, inelastic dynamic analysis is required to evaluate the safety of the structure designed by the current design codes. For the validation, a RC special moment resisting frame building was chosen and designed by IBC 2003 representing new codes. Maximum plastic rotation and dissipated energy of some selected members were calculated for examining if the inelastic behavior of the building follows the intention of the code, and drift demand were calculated as well for checking if the building well satisfies the design drift limit. In addition, the effect of including internal moment resisting frames (non lateral resisting system) on analyses results was investigated. As a result of this study, the building designed by IBC 2003 showed the inelastic behavior intended in the code and satisfied the design drift limit. Furthermore, the internal moment resisting frames should be included in the analytical model as they affect the results of seismic analyses significantly.